Metamath Proof Explorer


Theorem wspthnonfi

Description: In a finite graph, the set of simple paths of a fixed length between two vertices is finite. (Contributed by Alexander van der Vekens, 4-Mar-2018) (Revised by AV, 15-May-2021)

Ref Expression
Assertion wspthnonfi
|- ( ( Vtx ` G ) e. Fin -> ( A ( N WSPathsNOn G ) B ) e. Fin )

Proof

Step Hyp Ref Expression
1 wwlksnonfi
 |-  ( ( Vtx ` G ) e. Fin -> ( A ( N WWalksNOn G ) B ) e. Fin )
2 wspthsswwlknon
 |-  ( A ( N WSPathsNOn G ) B ) C_ ( A ( N WWalksNOn G ) B )
3 2 a1i
 |-  ( ( Vtx ` G ) e. Fin -> ( A ( N WSPathsNOn G ) B ) C_ ( A ( N WWalksNOn G ) B ) )
4 1 3 ssfid
 |-  ( ( Vtx ` G ) e. Fin -> ( A ( N WSPathsNOn G ) B ) e. Fin )