| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | iswwlksnon |  |-  ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } | 
						
							| 3 |  | wwlksnfi |  |-  ( ( Vtx ` G ) e. Fin -> ( N WWalksN G ) e. Fin ) | 
						
							| 4 |  | rabfi |  |-  ( ( N WWalksN G ) e. Fin -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } e. Fin ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( Vtx ` G ) e. Fin -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } e. Fin ) | 
						
							| 6 | 2 5 | eqeltrid |  |-  ( ( Vtx ` G ) e. Fin -> ( A ( N WWalksNOn G ) B ) e. Fin ) |