| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | wspthnonp |  |-  ( w e. ( A ( N WSPathsNOn G ) B ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( w e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) | 
						
							| 3 |  | simp3l |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( w e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) -> w e. ( A ( N WWalksNOn G ) B ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( w e. ( A ( N WSPathsNOn G ) B ) -> w e. ( A ( N WWalksNOn G ) B ) ) | 
						
							| 5 | 4 | ssriv |  |-  ( A ( N WSPathsNOn G ) B ) C_ ( A ( N WWalksNOn G ) B ) |