| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | wspthnonp | ⊢ ( 𝑤  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) | 
						
							| 3 |  | simp3l | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) )  →  𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑤  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  →  𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 ) ) | 
						
							| 5 | 4 | ssriv | ⊢ ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  ⊆  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 ) |