| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wspthnonp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fvex | ⊢ ( Vtx ‘ 𝑔 )  ∈  V | 
						
							| 3 | 2 2 | pm3.2i | ⊢ ( ( Vtx ‘ 𝑔 )  ∈  V  ∧  ( Vtx ‘ 𝑔 )  ∈  V ) | 
						
							| 4 | 3 | rgen2w | ⊢ ∀ 𝑛  ∈  ℕ0 ∀ 𝑔  ∈  V ( ( Vtx ‘ 𝑔 )  ∈  V  ∧  ( Vtx ‘ 𝑔 )  ∈  V ) | 
						
							| 5 |  | df-wspthsnon | ⊢  WSPathsNOn   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 7 | 6 6 | jca | ⊢ ( 𝑔  =  𝐺  →  ( ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 )  ∧  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 )  ∧  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 9 | 5 8 | el2mpocl | ⊢ ( ∀ 𝑛  ∈  ℕ0 ∀ 𝑔  ∈  V ( ( Vtx ‘ 𝑔 )  ∈  V  ∧  ( Vtx ‘ 𝑔 )  ∈  V )  →  ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) ) ) | 
						
							| 10 | 4 9 | ax-mp | ⊢ ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  ∧  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V ) ) | 
						
							| 12 | 1 | eleq2i | ⊢ ( 𝐴  ∈  𝑉  ↔  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 13 | 1 | eleq2i | ⊢ ( 𝐵  ∈  𝑉  ↔  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 14 | 12 13 | anbi12i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ↔  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 15 | 14 | biimpri | ⊢ ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  ∧  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 18 |  | wspthnon | ⊢ ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  ↔  ( 𝑊  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) | 
						
							| 19 | 18 | biimpi | ⊢ ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  →  ( 𝑊  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  ∧  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  ( 𝑊  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) | 
						
							| 21 | 11 17 20 | 3jca | ⊢ ( ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  ∧  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝑊  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) ) | 
						
							| 22 | 10 21 | mpdan | ⊢ ( 𝑊  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝑊  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) ) |