| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | wspthnonp | ⊢ ( 𝑃  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) ) | 
						
							| 3 | 1 | wspthnonp | ⊢ ( 𝑃  ∈  ( 𝐶 ( 𝑁  WSPathsNOn  𝐺 ) 𝐷 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐶  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐷  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( 𝐶 ( 𝑁  WWalksNOn  𝐺 ) 𝐷 )  ∧  ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) ) | 
						
							| 4 |  | simp3r | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) )  →  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 5 |  | simp3r | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐶  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐷  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( 𝐶 ( 𝑁  WWalksNOn  𝐺 ) 𝐷 )  ∧  ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) )  →  ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) | 
						
							| 6 |  | spthonpthon | ⊢ ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 7 |  | spthonpthon | ⊢ ( ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃  →  ℎ ( 𝐶 ( PathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) | 
						
							| 8 | 6 7 | anim12i | ⊢ ( ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 )  →  ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ℎ ( 𝐶 ( PathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) | 
						
							| 9 |  | pthontrlon | ⊢ ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 10 |  | pthontrlon | ⊢ ( ℎ ( 𝐶 ( PathsOn ‘ 𝐺 ) 𝐷 ) 𝑃  →  ℎ ( 𝐶 ( TrailsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) | 
						
							| 11 |  | trlsonwlkon | ⊢ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 12 |  | trlsonwlkon | ⊢ ( ℎ ( 𝐶 ( TrailsOn ‘ 𝐺 ) 𝐷 ) 𝑃  →  ℎ ( 𝐶 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) | 
						
							| 13 | 11 12 | anim12i | ⊢ ( ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ℎ ( 𝐶 ( TrailsOn ‘ 𝐺 ) 𝐷 ) 𝑃 )  →  ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ℎ ( 𝐶 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) | 
						
							| 14 | 9 10 13 | syl2an | ⊢ ( ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ℎ ( 𝐶 ( PathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 )  →  ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ℎ ( 𝐶 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) | 
						
							| 15 |  | wlksoneq1eq2 | ⊢ ( ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ℎ ( 𝐶 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) | 
						
							| 16 | 8 14 15 | 3syl | ⊢ ( ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) | 
						
							| 17 | 16 | expcom | ⊢ ( ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃  →  ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 18 | 17 | exlimiv | ⊢ ( ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃  →  ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) | 
						
							| 22 | 4 5 21 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) )  ∧  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐶  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐷  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( 𝐶 ( 𝑁  WWalksNOn  𝐺 ) 𝐷 )  ∧  ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) | 
						
							| 23 | 2 3 22 | syl2an | ⊢ ( ( 𝑃  ∈  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  ∧  𝑃  ∈  ( 𝐶 ( 𝑁  WSPathsNOn  𝐺 ) 𝐷 ) )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) |