| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 | 1 | wspthnonp |  | 
						
							| 3 | 1 | wspthnonp |  | 
						
							| 4 |  | simp3r |  | 
						
							| 5 |  | simp3r |  | 
						
							| 6 |  | spthonpthon |  | 
						
							| 7 |  | spthonpthon |  | 
						
							| 8 | 6 7 | anim12i |  | 
						
							| 9 |  | pthontrlon |  | 
						
							| 10 |  | pthontrlon |  | 
						
							| 11 |  | trlsonwlkon |  | 
						
							| 12 |  | trlsonwlkon |  | 
						
							| 13 | 11 12 | anim12i |  | 
						
							| 14 | 9 10 13 | syl2an |  | 
						
							| 15 |  | wlksoneq1eq2 |  | 
						
							| 16 | 8 14 15 | 3syl |  | 
						
							| 17 | 16 | expcom |  | 
						
							| 18 | 17 | exlimiv |  | 
						
							| 19 | 18 | com12 |  | 
						
							| 20 | 19 | exlimiv |  | 
						
							| 21 | 20 | imp |  | 
						
							| 22 | 4 5 21 | syl2an |  | 
						
							| 23 | 2 3 22 | syl2an |  |