Metamath Proof Explorer


Theorem wlksoneq1eq2

Description: Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021)

Ref Expression
Assertion wlksoneq1eq2 F A WalksOn G B P H C WalksOn G D P A = C B = D

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 wlkonprop F A WalksOn G B P G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B
3 1 wlkonprop H C WalksOn G D P G V C Vtx G D Vtx G H V P V H Walks G P P 0 = C P H = D
4 simp2 F Walks G P P 0 = A P F = B P 0 = A
5 4 eqcomd F Walks G P P 0 = A P F = B A = P 0
6 simp2 H Walks G P P 0 = C P H = D P 0 = C
7 5 6 sylan9eqr H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B A = C
8 simp3 F Walks G P P 0 = A P F = B P F = B
9 8 eqcomd F Walks G P P 0 = A P F = B B = P F
10 9 adantl H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B B = P F
11 wlklenvm1 H Walks G P H = P 1
12 wlklenvm1 F Walks G P F = P 1
13 eqtr3 F = P 1 H = P 1 F = H
14 13 fveq2d F = P 1 H = P 1 P F = P H
15 14 ex F = P 1 H = P 1 P F = P H
16 12 15 syl F Walks G P H = P 1 P F = P H
17 16 3ad2ant1 F Walks G P P 0 = A P F = B H = P 1 P F = P H
18 17 com12 H = P 1 F Walks G P P 0 = A P F = B P F = P H
19 11 18 syl H Walks G P F Walks G P P 0 = A P F = B P F = P H
20 19 3ad2ant1 H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B P F = P H
21 20 imp H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B P F = P H
22 simpl3 H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B P H = D
23 10 21 22 3eqtrd H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B B = D
24 7 23 jca H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B A = C B = D
25 24 ex H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B A = C B = D
26 25 3ad2ant3 G V C Vtx G D Vtx G H V P V H Walks G P P 0 = C P H = D F Walks G P P 0 = A P F = B A = C B = D
27 26 com12 F Walks G P P 0 = A P F = B G V C Vtx G D Vtx G H V P V H Walks G P P 0 = C P H = D A = C B = D
28 27 3ad2ant3 G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G V C Vtx G D Vtx G H V P V H Walks G P P 0 = C P H = D A = C B = D
29 28 imp G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G V C Vtx G D Vtx G H V P V H Walks G P P 0 = C P H = D A = C B = D
30 2 3 29 syl2an F A WalksOn G B P H C WalksOn G D P A = C B = D