| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkonl1iedg.i |
|
| 2 |
|
eqid |
|
| 3 |
2
|
wlkonprop |
|
| 4 |
|
fveq2 |
|
| 5 |
|
fv0p1e1 |
|
| 6 |
4 5
|
preq12d |
|
| 7 |
6
|
sseq1d |
|
| 8 |
7
|
rexbidv |
|
| 9 |
1
|
wlkvtxiedg |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
adantr |
|
| 12 |
|
wlkcl |
|
| 13 |
|
elnnne0 |
|
| 14 |
13
|
simplbi2 |
|
| 15 |
|
lbfzo0 |
|
| 16 |
14 15
|
imbitrrdi |
|
| 17 |
12 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
imp |
|
| 20 |
8 11 19
|
rspcdva |
|
| 21 |
|
fvex |
|
| 22 |
|
fvex |
|
| 23 |
21 22
|
prss |
|
| 24 |
|
eleq1 |
|
| 25 |
|
ax-1 |
|
| 26 |
24 25
|
biimtrdi |
|
| 27 |
26
|
adantl |
|
| 28 |
27
|
impd |
|
| 29 |
23 28
|
biimtrrid |
|
| 30 |
29
|
reximdv |
|
| 31 |
30
|
adantr |
|
| 32 |
20 31
|
mpd |
|
| 33 |
32
|
ex |
|
| 34 |
33
|
3adant3 |
|
| 35 |
34
|
3ad2ant3 |
|
| 36 |
3 35
|
syl |
|
| 37 |
36
|
imp |
|