Metamath Proof Explorer


Theorem wlkvtxiedg

Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021) (Proof shortened by AV, 4-Apr-2021)

Ref Expression
Hypothesis wlkvtxeledg.i I = iEdg G
Assertion wlkvtxiedg F Walks G P k 0 ..^ F e ran I P k P k + 1 e

Proof

Step Hyp Ref Expression
1 wlkvtxeledg.i I = iEdg G
2 1 wlkvtxeledg F Walks G P k 0 ..^ F P k P k + 1 I F k
3 fvex P k V
4 3 prnz P k P k + 1
5 ssn0 P k P k + 1 I F k P k P k + 1 I F k
6 4 5 mpan2 P k P k + 1 I F k I F k
7 6 adantl F Walks G P k 0 ..^ F P k P k + 1 I F k I F k
8 fvn0fvelrn I F k I F k ran I
9 7 8 syl F Walks G P k 0 ..^ F P k P k + 1 I F k I F k ran I
10 sseq2 e = I F k P k P k + 1 e P k P k + 1 I F k
11 10 adantl F Walks G P k 0 ..^ F P k P k + 1 I F k e = I F k P k P k + 1 e P k P k + 1 I F k
12 simpr F Walks G P k 0 ..^ F P k P k + 1 I F k P k P k + 1 I F k
13 9 11 12 rspcedvd F Walks G P k 0 ..^ F P k P k + 1 I F k e ran I P k P k + 1 e
14 13 ex F Walks G P k 0 ..^ F P k P k + 1 I F k e ran I P k P k + 1 e
15 14 ralimdva F Walks G P k 0 ..^ F P k P k + 1 I F k k 0 ..^ F e ran I P k P k + 1 e
16 2 15 mpd F Walks G P k 0 ..^ F e ran I P k P k + 1 e