Metamath Proof Explorer


Theorem wlkvtxiedg

Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021) (Proof shortened by AV, 4-Apr-2021)

Ref Expression
Hypothesis wlkvtxeledg.i I=iEdgG
Assertion wlkvtxiedg FWalksGPk0..^FeranIPkPk+1e

Proof

Step Hyp Ref Expression
1 wlkvtxeledg.i I=iEdgG
2 1 wlkvtxeledg FWalksGPk0..^FPkPk+1IFk
3 fvex PkV
4 3 prnz PkPk+1
5 ssn0 PkPk+1IFkPkPk+1IFk
6 4 5 mpan2 PkPk+1IFkIFk
7 6 adantl FWalksGPk0..^FPkPk+1IFkIFk
8 fvn0fvelrn IFkIFkranI
9 7 8 syl FWalksGPk0..^FPkPk+1IFkIFkranI
10 sseq2 e=IFkPkPk+1ePkPk+1IFk
11 10 adantl FWalksGPk0..^FPkPk+1IFke=IFkPkPk+1ePkPk+1IFk
12 simpr FWalksGPk0..^FPkPk+1IFkPkPk+1IFk
13 9 11 12 rspcedvd FWalksGPk0..^FPkPk+1IFkeranIPkPk+1e
14 13 ex FWalksGPk0..^FPkPk+1IFkeranIPkPk+1e
15 14 ralimdva FWalksGPk0..^FPkPk+1IFkk0..^FeranIPkPk+1e
16 2 15 mpd FWalksGPk0..^FeranIPkPk+1e