Metamath Proof Explorer


Theorem wspthnonp

Description: Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021) (Proof shortened by AV, 15-Mar-2022)

Ref Expression
Hypothesis wspthnonp.v V = Vtx G
Assertion wspthnonp W A N WSPathsNOn G B N 0 G V A V B V W A N WWalksNOn G B f f A SPathsOn G B W

Proof

Step Hyp Ref Expression
1 wspthnonp.v V = Vtx G
2 fvex Vtx g V
3 2 2 pm3.2i Vtx g V Vtx g V
4 3 rgen2w n 0 g V Vtx g V Vtx g V
5 df-wspthsnon WSPathsNOn = n 0 , g V a Vtx g , b Vtx g w a n WWalksNOn g b | f f a SPathsOn g b w
6 fveq2 g = G Vtx g = Vtx G
7 6 6 jca g = G Vtx g = Vtx G Vtx g = Vtx G
8 7 adantl n = N g = G Vtx g = Vtx G Vtx g = Vtx G
9 5 8 el2mpocl n 0 g V Vtx g V Vtx g V W A N WSPathsNOn G B N 0 G V A Vtx G B Vtx G
10 4 9 ax-mp W A N WSPathsNOn G B N 0 G V A Vtx G B Vtx G
11 simprl W A N WSPathsNOn G B N 0 G V A Vtx G B Vtx G N 0 G V
12 1 eleq2i A V A Vtx G
13 1 eleq2i B V B Vtx G
14 12 13 anbi12i A V B V A Vtx G B Vtx G
15 14 biimpri A Vtx G B Vtx G A V B V
16 15 adantl N 0 G V A Vtx G B Vtx G A V B V
17 16 adantl W A N WSPathsNOn G B N 0 G V A Vtx G B Vtx G A V B V
18 wspthnon W A N WSPathsNOn G B W A N WWalksNOn G B f f A SPathsOn G B W
19 18 biimpi W A N WSPathsNOn G B W A N WWalksNOn G B f f A SPathsOn G B W
20 19 adantr W A N WSPathsNOn G B N 0 G V A Vtx G B Vtx G W A N WWalksNOn G B f f A SPathsOn G B W
21 11 17 20 3jca W A N WSPathsNOn G B N 0 G V A Vtx G B Vtx G N 0 G V A V B V W A N WWalksNOn G B f f A SPathsOn G B W
22 10 21 mpdan W A N WSPathsNOn G B N 0 G V A V B V W A N WWalksNOn G B f f A SPathsOn G B W