Metamath Proof Explorer


Theorem wspthnonp

Description: Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021) (Proof shortened by AV, 15-Mar-2022)

Ref Expression
Hypothesis wspthnonp.v V=VtxG
Assertion wspthnonp WANWSPathsNOnGBN0GVAVBVWANWWalksNOnGBffASPathsOnGBW

Proof

Step Hyp Ref Expression
1 wspthnonp.v V=VtxG
2 fvex VtxgV
3 2 2 pm3.2i VtxgVVtxgV
4 3 rgen2w n0gVVtxgVVtxgV
5 df-wspthsnon WSPathsNOn=n0,gVaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw
6 fveq2 g=GVtxg=VtxG
7 6 6 jca g=GVtxg=VtxGVtxg=VtxG
8 7 adantl n=Ng=GVtxg=VtxGVtxg=VtxG
9 5 8 el2mpocl n0gVVtxgVVtxgVWANWSPathsNOnGBN0GVAVtxGBVtxG
10 4 9 ax-mp WANWSPathsNOnGBN0GVAVtxGBVtxG
11 simprl WANWSPathsNOnGBN0GVAVtxGBVtxGN0GV
12 1 eleq2i AVAVtxG
13 1 eleq2i BVBVtxG
14 12 13 anbi12i AVBVAVtxGBVtxG
15 14 biimpri AVtxGBVtxGAVBV
16 15 adantl N0GVAVtxGBVtxGAVBV
17 16 adantl WANWSPathsNOnGBN0GVAVtxGBVtxGAVBV
18 wspthnon WANWSPathsNOnGBWANWWalksNOnGBffASPathsOnGBW
19 18 biimpi WANWSPathsNOnGBWANWWalksNOnGBffASPathsOnGBW
20 19 adantr WANWSPathsNOnGBN0GVAVtxGBVtxGWANWWalksNOnGBffASPathsOnGBW
21 11 17 20 3jca WANWSPathsNOnGBN0GVAVtxGBVtxGN0GVAVBVWANWWalksNOnGBffASPathsOnGBW
22 10 21 mpdan WANWSPathsNOnGBN0GVAVBVWANWWalksNOnGBffASPathsOnGBW