Metamath Proof Explorer


Theorem spthonpthon

Description: A simple path between two vertices is a path between these vertices. (Contributed by AV, 24-Jan-2021)

Ref Expression
Assertion spthonpthon FASPathsOnGBPFAPathsOnGBP

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 spthonprop FASPathsOnGBPGVAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGP
3 3simpc GVAVtxGBVtxGAVtxGBVtxG
4 3 3anim1i GVAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGPAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGP
5 spthispth FSPathsGPFPathsGP
6 5 anim2i FATrailsOnGBPFSPathsGPFATrailsOnGBPFPathsGP
7 6 3ad2ant3 AVtxGBVtxGFVPVFATrailsOnGBPFSPathsGPFATrailsOnGBPFPathsGP
8 1 ispthson AVtxGBVtxGFVPVFAPathsOnGBPFATrailsOnGBPFPathsGP
9 8 3adant3 AVtxGBVtxGFVPVFATrailsOnGBPFSPathsGPFAPathsOnGBPFATrailsOnGBPFPathsGP
10 7 9 mpbird AVtxGBVtxGFVPVFATrailsOnGBPFSPathsGPFAPathsOnGBP
11 2 4 10 3syl FASPathsOnGBPFAPathsOnGBP