| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 | 1 | spthonprop |  | 
						
							| 3 | 1 | istrlson |  | 
						
							| 4 | 3 | 3adantl1 |  | 
						
							| 5 |  | isspth |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 | 4 6 | anbi12d |  | 
						
							| 8 | 1 | wlkonprop |  | 
						
							| 9 |  | wlkcl |  | 
						
							| 10 | 1 | wlkp |  | 
						
							| 11 |  | df-f1 |  | 
						
							| 12 |  | eqeq2 |  | 
						
							| 13 |  | eqtr3 |  | 
						
							| 14 |  | elnn0uz |  | 
						
							| 15 |  | eluzfz2 |  | 
						
							| 16 | 14 15 | sylbi |  | 
						
							| 17 |  | 0elfz |  | 
						
							| 18 | 16 17 | jca |  | 
						
							| 19 |  | f1veqaeq |  | 
						
							| 20 | 18 19 | sylan2 |  | 
						
							| 21 | 20 | ex |  | 
						
							| 22 | 21 | com13 |  | 
						
							| 23 | 13 22 | syl |  | 
						
							| 24 | 23 | expcom |  | 
						
							| 25 | 12 24 | biimtrdi |  | 
						
							| 26 | 25 | com15 |  | 
						
							| 27 | 11 26 | sylbir |  | 
						
							| 28 | 27 | expcom |  | 
						
							| 29 | 28 | com15 |  | 
						
							| 30 | 9 10 29 | sylc |  | 
						
							| 31 | 30 | 3imp1 |  | 
						
							| 32 |  | fveqeq2 |  | 
						
							| 33 | 32 | anbi2d |  | 
						
							| 34 |  | eqtr2 |  | 
						
							| 35 | 33 34 | biimtrdi |  | 
						
							| 36 | 35 | com12 |  | 
						
							| 37 | 36 | 3adant1 |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 31 38 | impbid |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 40 | 3ad2ant3 |  | 
						
							| 42 | 8 41 | syl |  | 
						
							| 43 | 42 | adantld |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 44 | imp |  | 
						
							| 46 | 7 45 | biimtrdi |  | 
						
							| 47 | 46 | 3impia |  | 
						
							| 48 | 2 47 | syl |  |