Metamath Proof Explorer


Theorem uhgrwkspthlem1

Description: Lemma 1 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)

Ref Expression
Assertion uhgrwkspthlem1 FWalksGPF=1FunF-1

Proof

Step Hyp Ref Expression
1 eqid iEdgG=iEdgG
2 1 wlkf FWalksGPFWorddomiEdgG
3 wrdl1exs1 FWorddomiEdgGF=1idomiEdgGF=⟨“i”⟩
4 funcnvs1 Fun⟨“i”⟩-1
5 cnveq F=⟨“i”⟩F-1=⟨“i”⟩-1
6 5 funeqd F=⟨“i”⟩FunF-1Fun⟨“i”⟩-1
7 4 6 mpbiri F=⟨“i”⟩FunF-1
8 7 rexlimivw idomiEdgGF=⟨“i”⟩FunF-1
9 3 8 syl FWorddomiEdgGF=1FunF-1
10 2 9 sylan FWalksGPF=1FunF-1