Metamath Proof Explorer


Theorem istrlson

Description: Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypothesis trlsonfval.v V=VtxG
Assertion istrlson AVBVFUPZFATrailsOnGBPFAWalksOnGBPFTrailsGP

Proof

Step Hyp Ref Expression
1 trlsonfval.v V=VtxG
2 1 trlsonfval AVBVATrailsOnGB=fp|fAWalksOnGBpfTrailsGp
3 2 breqd AVBVFATrailsOnGBPFfp|fAWalksOnGBpfTrailsGpP
4 breq12 f=Fp=PfAWalksOnGBpFAWalksOnGBP
5 breq12 f=Fp=PfTrailsGpFTrailsGP
6 4 5 anbi12d f=Fp=PfAWalksOnGBpfTrailsGpFAWalksOnGBPFTrailsGP
7 eqid fp|fAWalksOnGBpfTrailsGp=fp|fAWalksOnGBpfTrailsGp
8 6 7 brabga FUPZFfp|fAWalksOnGBpfTrailsGpPFAWalksOnGBPFTrailsGP
9 3 8 sylan9bb AVBVFUPZFATrailsOnGBPFAWalksOnGBPFTrailsGP