| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | iswwlksnon | ⊢ ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } | 
						
							| 3 |  | wwlksnfi | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑁  WWalksN  𝐺 )  ∈  Fin ) | 
						
							| 4 |  | rabfi | ⊢ ( ( 𝑁  WWalksN  𝐺 )  ∈  Fin  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  ∈  Fin ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  ∈  Fin ) | 
						
							| 6 | 2 5 | eqeltrid | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∈  Fin ) |