| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xle2addd.1 |
|- ( ph -> A e. RR* ) |
| 2 |
|
xle2addd.2 |
|- ( ph -> B e. RR* ) |
| 3 |
|
xle2addd.3 |
|- ( ph -> C e. RR* ) |
| 4 |
|
xle2addd.4 |
|- ( ph -> D e. RR* ) |
| 5 |
|
xle2addd.5 |
|- ( ph -> A <_ C ) |
| 6 |
|
xrle2addd.6 |
|- ( ph -> B <_ D ) |
| 7 |
1 2
|
xaddcld |
|- ( ph -> ( A +e B ) e. RR* ) |
| 8 |
1 4
|
xaddcld |
|- ( ph -> ( A +e D ) e. RR* ) |
| 9 |
3 4
|
xaddcld |
|- ( ph -> ( C +e D ) e. RR* ) |
| 10 |
2 4 1 6
|
xleadd2d |
|- ( ph -> ( A +e B ) <_ ( A +e D ) ) |
| 11 |
1 3 4 5
|
xleadd1d |
|- ( ph -> ( A +e D ) <_ ( C +e D ) ) |
| 12 |
7 8 9 10 11
|
xrletrd |
|- ( ph -> ( A +e B ) <_ ( C +e D ) ) |