Description: Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xle2addd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| xle2addd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| xle2addd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| xle2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) | ||
| xle2addd.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | ||
| xrle2addd.6 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) | ||
| Assertion | xle2addd | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐶 +𝑒 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xle2addd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | xle2addd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | xle2addd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 4 | xle2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) | |
| 5 | xle2addd.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | |
| 6 | xrle2addd.6 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) | |
| 7 | 1 2 | xaddcld | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ) |
| 8 | 1 4 | xaddcld | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐷 ) ∈ ℝ* ) |
| 9 | 3 4 | xaddcld | ⊢ ( 𝜑 → ( 𝐶 +𝑒 𝐷 ) ∈ ℝ* ) |
| 10 | 2 4 1 6 | xleadd2d | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐴 +𝑒 𝐷 ) ) |
| 11 | 1 3 4 5 | xleadd1d | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐷 ) ≤ ( 𝐶 +𝑒 𝐷 ) ) |
| 12 | 7 8 9 10 11 | xrletrd | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐶 +𝑒 𝐷 ) ) |