| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrgelem.xph |
|- F/ x ph |
| 2 |
|
supxrgelem.a |
|- ( ph -> A C_ RR* ) |
| 3 |
|
supxrgelem.b |
|- ( ph -> B e. RR* ) |
| 4 |
|
supxrgelem.y |
|- ( ( ph /\ x e. RR+ ) -> E. y e. A B < ( y +e x ) ) |
| 5 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
| 6 |
3 5
|
syl |
|- ( ph -> B <_ +oo ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> B <_ +oo ) |
| 8 |
|
id |
|- ( sup ( A , RR* , < ) = +oo -> sup ( A , RR* , < ) = +oo ) |
| 9 |
8
|
eqcomd |
|- ( sup ( A , RR* , < ) = +oo -> +oo = sup ( A , RR* , < ) ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> +oo = sup ( A , RR* , < ) ) |
| 11 |
7 10
|
breqtrd |
|- ( ( ph /\ sup ( A , RR* , < ) = +oo ) -> B <_ sup ( A , RR* , < ) ) |
| 12 |
|
simpl |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> ph ) |
| 13 |
|
1rp |
|- 1 e. RR+ |
| 14 |
|
nfcv |
|- F/_ x 1 |
| 15 |
|
nfv |
|- F/ x 1 e. RR+ |
| 16 |
1 15
|
nfan |
|- F/ x ( ph /\ 1 e. RR+ ) |
| 17 |
|
nfv |
|- F/ x E. y e. A B < ( y +e 1 ) |
| 18 |
16 17
|
nfim |
|- F/ x ( ( ph /\ 1 e. RR+ ) -> E. y e. A B < ( y +e 1 ) ) |
| 19 |
|
eleq1 |
|- ( x = 1 -> ( x e. RR+ <-> 1 e. RR+ ) ) |
| 20 |
19
|
anbi2d |
|- ( x = 1 -> ( ( ph /\ x e. RR+ ) <-> ( ph /\ 1 e. RR+ ) ) ) |
| 21 |
|
oveq2 |
|- ( x = 1 -> ( y +e x ) = ( y +e 1 ) ) |
| 22 |
21
|
breq2d |
|- ( x = 1 -> ( B < ( y +e x ) <-> B < ( y +e 1 ) ) ) |
| 23 |
22
|
rexbidv |
|- ( x = 1 -> ( E. y e. A B < ( y +e x ) <-> E. y e. A B < ( y +e 1 ) ) ) |
| 24 |
20 23
|
imbi12d |
|- ( x = 1 -> ( ( ( ph /\ x e. RR+ ) -> E. y e. A B < ( y +e x ) ) <-> ( ( ph /\ 1 e. RR+ ) -> E. y e. A B < ( y +e 1 ) ) ) ) |
| 25 |
14 18 24 4
|
vtoclgf |
|- ( 1 e. RR+ -> ( ( ph /\ 1 e. RR+ ) -> E. y e. A B < ( y +e 1 ) ) ) |
| 26 |
13 25
|
ax-mp |
|- ( ( ph /\ 1 e. RR+ ) -> E. y e. A B < ( y +e 1 ) ) |
| 27 |
13 26
|
mpan2 |
|- ( ph -> E. y e. A B < ( y +e 1 ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> E. y e. A B < ( y +e 1 ) ) |
| 29 |
|
mnfxr |
|- -oo e. RR* |
| 30 |
29
|
a1i |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> -oo e. RR* ) |
| 31 |
2
|
sselda |
|- ( ( ph /\ y e. A ) -> y e. RR* ) |
| 32 |
31
|
3adant3 |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> y e. RR* ) |
| 33 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
| 34 |
2 33
|
syl |
|- ( ph -> sup ( A , RR* , < ) e. RR* ) |
| 35 |
34
|
3ad2ant1 |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> sup ( A , RR* , < ) e. RR* ) |
| 36 |
|
simpl3 |
|- ( ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) /\ -. -oo < y ) -> B < ( y +e 1 ) ) |
| 37 |
|
simpr |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> -. -oo < y ) |
| 38 |
31
|
adantr |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> y e. RR* ) |
| 39 |
|
ngtmnft |
|- ( y e. RR* -> ( y = -oo <-> -. -oo < y ) ) |
| 40 |
38 39
|
syl |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> ( y = -oo <-> -. -oo < y ) ) |
| 41 |
37 40
|
mpbird |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> y = -oo ) |
| 42 |
41
|
oveq1d |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> ( y +e 1 ) = ( -oo +e 1 ) ) |
| 43 |
|
1xr |
|- 1 e. RR* |
| 44 |
43
|
a1i |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> 1 e. RR* ) |
| 45 |
|
1re |
|- 1 e. RR |
| 46 |
|
renepnf |
|- ( 1 e. RR -> 1 =/= +oo ) |
| 47 |
45 46
|
ax-mp |
|- 1 =/= +oo |
| 48 |
47
|
a1i |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> 1 =/= +oo ) |
| 49 |
|
xaddmnf2 |
|- ( ( 1 e. RR* /\ 1 =/= +oo ) -> ( -oo +e 1 ) = -oo ) |
| 50 |
44 48 49
|
syl2anc |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> ( -oo +e 1 ) = -oo ) |
| 51 |
42 50
|
eqtrd |
|- ( ( ( ph /\ y e. A ) /\ -. -oo < y ) -> ( y +e 1 ) = -oo ) |
| 52 |
51
|
3adantl3 |
|- ( ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) /\ -. -oo < y ) -> ( y +e 1 ) = -oo ) |
| 53 |
36 52
|
breqtrd |
|- ( ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) /\ -. -oo < y ) -> B < -oo ) |
| 54 |
|
nltmnf |
|- ( B e. RR* -> -. B < -oo ) |
| 55 |
3 54
|
syl |
|- ( ph -> -. B < -oo ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ -. -oo < y ) -> -. B < -oo ) |
| 57 |
56
|
3ad2antl1 |
|- ( ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) /\ -. -oo < y ) -> -. B < -oo ) |
| 58 |
53 57
|
condan |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> -oo < y ) |
| 59 |
2
|
adantr |
|- ( ( ph /\ y e. A ) -> A C_ RR* ) |
| 60 |
|
simpr |
|- ( ( ph /\ y e. A ) -> y e. A ) |
| 61 |
|
supxrub |
|- ( ( A C_ RR* /\ y e. A ) -> y <_ sup ( A , RR* , < ) ) |
| 62 |
59 60 61
|
syl2anc |
|- ( ( ph /\ y e. A ) -> y <_ sup ( A , RR* , < ) ) |
| 63 |
62
|
3adant3 |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> y <_ sup ( A , RR* , < ) ) |
| 64 |
30 32 35 58 63
|
xrltletrd |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> -oo < sup ( A , RR* , < ) ) |
| 65 |
64
|
3exp |
|- ( ph -> ( y e. A -> ( B < ( y +e 1 ) -> -oo < sup ( A , RR* , < ) ) ) ) |
| 66 |
65
|
adantr |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> ( y e. A -> ( B < ( y +e 1 ) -> -oo < sup ( A , RR* , < ) ) ) ) |
| 67 |
66
|
rexlimdv |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> ( E. y e. A B < ( y +e 1 ) -> -oo < sup ( A , RR* , < ) ) ) |
| 68 |
28 67
|
mpd |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> -oo < sup ( A , RR* , < ) ) |
| 69 |
|
simpr |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> -. sup ( A , RR* , < ) = +oo ) |
| 70 |
|
nltpnft |
|- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 71 |
34 70
|
syl |
|- ( ph -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 73 |
69 72
|
mtbid |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> -. -. sup ( A , RR* , < ) < +oo ) |
| 74 |
73
|
notnotrd |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) < +oo ) |
| 75 |
68 74
|
jca |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) |
| 76 |
34
|
adantr |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) e. RR* ) |
| 77 |
|
xrrebnd |
|- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) e. RR <-> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) ) |
| 78 |
76 77
|
syl |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> ( sup ( A , RR* , < ) e. RR <-> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) ) |
| 79 |
75 78
|
mpbird |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> sup ( A , RR* , < ) e. RR ) |
| 80 |
|
simpl |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ -. B <_ sup ( A , RR* , < ) ) -> ( ph /\ sup ( A , RR* , < ) e. RR ) ) |
| 81 |
|
simpr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ -. B <_ sup ( A , RR* , < ) ) -> -. B <_ sup ( A , RR* , < ) ) |
| 82 |
34
|
adantr |
|- ( ( ph /\ -. B <_ sup ( A , RR* , < ) ) -> sup ( A , RR* , < ) e. RR* ) |
| 83 |
3
|
adantr |
|- ( ( ph /\ -. B <_ sup ( A , RR* , < ) ) -> B e. RR* ) |
| 84 |
|
xrltnle |
|- ( ( sup ( A , RR* , < ) e. RR* /\ B e. RR* ) -> ( sup ( A , RR* , < ) < B <-> -. B <_ sup ( A , RR* , < ) ) ) |
| 85 |
82 83 84
|
syl2anc |
|- ( ( ph /\ -. B <_ sup ( A , RR* , < ) ) -> ( sup ( A , RR* , < ) < B <-> -. B <_ sup ( A , RR* , < ) ) ) |
| 86 |
85
|
adantlr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ -. B <_ sup ( A , RR* , < ) ) -> ( sup ( A , RR* , < ) < B <-> -. B <_ sup ( A , RR* , < ) ) ) |
| 87 |
81 86
|
mpbird |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ -. B <_ sup ( A , RR* , < ) ) -> sup ( A , RR* , < ) < B ) |
| 88 |
|
simpll |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ph ) |
| 89 |
29
|
a1i |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> -oo e. RR* ) |
| 90 |
88 34
|
syl |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> sup ( A , RR* , < ) e. RR* ) |
| 91 |
88 3
|
syl |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> B e. RR* ) |
| 92 |
|
mnfle |
|- ( sup ( A , RR* , < ) e. RR* -> -oo <_ sup ( A , RR* , < ) ) |
| 93 |
34 92
|
syl |
|- ( ph -> -oo <_ sup ( A , RR* , < ) ) |
| 94 |
93
|
ad2antrr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> -oo <_ sup ( A , RR* , < ) ) |
| 95 |
|
simpr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> sup ( A , RR* , < ) < B ) |
| 96 |
89 90 91 94 95
|
xrlelttrd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> -oo < B ) |
| 97 |
|
id |
|- ( ph -> ph ) |
| 98 |
13
|
a1i |
|- ( ph -> 1 e. RR+ ) |
| 99 |
97 98 26
|
syl2anc |
|- ( ph -> E. y e. A B < ( y +e 1 ) ) |
| 100 |
99
|
ad2antrr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> E. y e. A B < ( y +e 1 ) ) |
| 101 |
3
|
3ad2ant1 |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> B e. RR* ) |
| 102 |
43
|
a1i |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> 1 e. RR* ) |
| 103 |
32 102
|
jca |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> ( y e. RR* /\ 1 e. RR* ) ) |
| 104 |
|
xaddcl |
|- ( ( y e. RR* /\ 1 e. RR* ) -> ( y +e 1 ) e. RR* ) |
| 105 |
103 104
|
syl |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> ( y +e 1 ) e. RR* ) |
| 106 |
|
pnfxr |
|- +oo e. RR* |
| 107 |
106
|
a1i |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> +oo e. RR* ) |
| 108 |
|
simp3 |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> B < ( y +e 1 ) ) |
| 109 |
31 43 104
|
sylancl |
|- ( ( ph /\ y e. A ) -> ( y +e 1 ) e. RR* ) |
| 110 |
|
pnfge |
|- ( ( y +e 1 ) e. RR* -> ( y +e 1 ) <_ +oo ) |
| 111 |
109 110
|
syl |
|- ( ( ph /\ y e. A ) -> ( y +e 1 ) <_ +oo ) |
| 112 |
111
|
3adant3 |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> ( y +e 1 ) <_ +oo ) |
| 113 |
101 105 107 108 112
|
xrltletrd |
|- ( ( ph /\ y e. A /\ B < ( y +e 1 ) ) -> B < +oo ) |
| 114 |
113
|
3exp |
|- ( ph -> ( y e. A -> ( B < ( y +e 1 ) -> B < +oo ) ) ) |
| 115 |
114
|
rexlimdv |
|- ( ph -> ( E. y e. A B < ( y +e 1 ) -> B < +oo ) ) |
| 116 |
88 115
|
syl |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( E. y e. A B < ( y +e 1 ) -> B < +oo ) ) |
| 117 |
100 116
|
mpd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> B < +oo ) |
| 118 |
96 117
|
jca |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( -oo < B /\ B < +oo ) ) |
| 119 |
|
xrrebnd |
|- ( B e. RR* -> ( B e. RR <-> ( -oo < B /\ B < +oo ) ) ) |
| 120 |
91 119
|
syl |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( B e. RR <-> ( -oo < B /\ B < +oo ) ) ) |
| 121 |
118 120
|
mpbird |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> B e. RR ) |
| 122 |
|
simpr |
|- ( ( ph /\ sup ( A , RR* , < ) e. RR ) -> sup ( A , RR* , < ) e. RR ) |
| 123 |
122
|
adantr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> sup ( A , RR* , < ) e. RR ) |
| 124 |
121 123
|
resubcld |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( B - sup ( A , RR* , < ) ) e. RR ) |
| 125 |
27 115
|
mpd |
|- ( ph -> B < +oo ) |
| 126 |
125
|
ad2antrr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> B < +oo ) |
| 127 |
96 126
|
jca |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( -oo < B /\ B < +oo ) ) |
| 128 |
127 120
|
mpbird |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> B e. RR ) |
| 129 |
123 128
|
posdifd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( sup ( A , RR* , < ) < B <-> 0 < ( B - sup ( A , RR* , < ) ) ) ) |
| 130 |
95 129
|
mpbid |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> 0 < ( B - sup ( A , RR* , < ) ) ) |
| 131 |
124 130
|
elrpd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( B - sup ( A , RR* , < ) ) e. RR+ ) |
| 132 |
|
ovex |
|- ( B - sup ( A , RR* , < ) ) e. _V |
| 133 |
|
nfcv |
|- F/_ x ( B - sup ( A , RR* , < ) ) |
| 134 |
|
nfv |
|- F/ x ( B - sup ( A , RR* , < ) ) e. RR+ |
| 135 |
1 134
|
nfan |
|- F/ x ( ph /\ ( B - sup ( A , RR* , < ) ) e. RR+ ) |
| 136 |
|
nfv |
|- F/ x E. y e. A B < ( y +e ( B - sup ( A , RR* , < ) ) ) |
| 137 |
135 136
|
nfim |
|- F/ x ( ( ph /\ ( B - sup ( A , RR* , < ) ) e. RR+ ) -> E. y e. A B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) |
| 138 |
|
eleq1 |
|- ( x = ( B - sup ( A , RR* , < ) ) -> ( x e. RR+ <-> ( B - sup ( A , RR* , < ) ) e. RR+ ) ) |
| 139 |
138
|
anbi2d |
|- ( x = ( B - sup ( A , RR* , < ) ) -> ( ( ph /\ x e. RR+ ) <-> ( ph /\ ( B - sup ( A , RR* , < ) ) e. RR+ ) ) ) |
| 140 |
|
oveq2 |
|- ( x = ( B - sup ( A , RR* , < ) ) -> ( y +e x ) = ( y +e ( B - sup ( A , RR* , < ) ) ) ) |
| 141 |
140
|
breq2d |
|- ( x = ( B - sup ( A , RR* , < ) ) -> ( B < ( y +e x ) <-> B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) ) |
| 142 |
141
|
rexbidv |
|- ( x = ( B - sup ( A , RR* , < ) ) -> ( E. y e. A B < ( y +e x ) <-> E. y e. A B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) ) |
| 143 |
139 142
|
imbi12d |
|- ( x = ( B - sup ( A , RR* , < ) ) -> ( ( ( ph /\ x e. RR+ ) -> E. y e. A B < ( y +e x ) ) <-> ( ( ph /\ ( B - sup ( A , RR* , < ) ) e. RR+ ) -> E. y e. A B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) ) ) |
| 144 |
133 137 143 4
|
vtoclgf |
|- ( ( B - sup ( A , RR* , < ) ) e. _V -> ( ( ph /\ ( B - sup ( A , RR* , < ) ) e. RR+ ) -> E. y e. A B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) ) |
| 145 |
132 144
|
ax-mp |
|- ( ( ph /\ ( B - sup ( A , RR* , < ) ) e. RR+ ) -> E. y e. A B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) |
| 146 |
88 131 145
|
syl2anc |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> E. y e. A B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) |
| 147 |
|
ltpnf |
|- ( sup ( A , RR* , < ) e. RR -> sup ( A , RR* , < ) < +oo ) |
| 148 |
147
|
adantr |
|- ( ( sup ( A , RR* , < ) e. RR /\ y = +oo ) -> sup ( A , RR* , < ) < +oo ) |
| 149 |
|
id |
|- ( y = +oo -> y = +oo ) |
| 150 |
149
|
eqcomd |
|- ( y = +oo -> +oo = y ) |
| 151 |
150
|
adantl |
|- ( ( sup ( A , RR* , < ) e. RR /\ y = +oo ) -> +oo = y ) |
| 152 |
148 151
|
breqtrd |
|- ( ( sup ( A , RR* , < ) e. RR /\ y = +oo ) -> sup ( A , RR* , < ) < y ) |
| 153 |
152
|
adantll |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ y = +oo ) -> sup ( A , RR* , < ) < y ) |
| 154 |
153
|
ad5ant15 |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ y = +oo ) -> sup ( A , RR* , < ) < y ) |
| 155 |
|
simplll |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) ) |
| 156 |
|
simpl |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. -oo < y ) -> ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) ) |
| 157 |
88 41
|
sylanl1 |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ -. -oo < y ) -> y = -oo ) |
| 158 |
157
|
adantlr |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. -oo < y ) -> y = -oo ) |
| 159 |
|
simplr |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ y = -oo ) -> B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) |
| 160 |
|
oveq1 |
|- ( y = -oo -> ( y +e ( B - sup ( A , RR* , < ) ) ) = ( -oo +e ( B - sup ( A , RR* , < ) ) ) ) |
| 161 |
160
|
adantl |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ y = -oo ) -> ( y +e ( B - sup ( A , RR* , < ) ) ) = ( -oo +e ( B - sup ( A , RR* , < ) ) ) ) |
| 162 |
128 123
|
resubcld |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( B - sup ( A , RR* , < ) ) e. RR ) |
| 163 |
162
|
rexrd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( B - sup ( A , RR* , < ) ) e. RR* ) |
| 164 |
163
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ y = -oo ) -> ( B - sup ( A , RR* , < ) ) e. RR* ) |
| 165 |
|
renepnf |
|- ( ( B - sup ( A , RR* , < ) ) e. RR -> ( B - sup ( A , RR* , < ) ) =/= +oo ) |
| 166 |
124 165
|
syl |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( B - sup ( A , RR* , < ) ) =/= +oo ) |
| 167 |
166
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ y = -oo ) -> ( B - sup ( A , RR* , < ) ) =/= +oo ) |
| 168 |
|
xaddmnf2 |
|- ( ( ( B - sup ( A , RR* , < ) ) e. RR* /\ ( B - sup ( A , RR* , < ) ) =/= +oo ) -> ( -oo +e ( B - sup ( A , RR* , < ) ) ) = -oo ) |
| 169 |
164 167 168
|
syl2anc |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ y = -oo ) -> ( -oo +e ( B - sup ( A , RR* , < ) ) ) = -oo ) |
| 170 |
161 169
|
eqtrd |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ y = -oo ) -> ( y +e ( B - sup ( A , RR* , < ) ) ) = -oo ) |
| 171 |
159 170
|
breqtrd |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ y = -oo ) -> B < -oo ) |
| 172 |
156 158 171
|
syl2anc |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. -oo < y ) -> B < -oo ) |
| 173 |
55
|
ad5antr |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. -oo < y ) -> -. B < -oo ) |
| 174 |
172 173
|
condan |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> -oo < y ) |
| 175 |
174
|
adantr |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> -oo < y ) |
| 176 |
|
simp3 |
|- ( ( ph /\ y e. A /\ -. y = +oo ) -> -. y = +oo ) |
| 177 |
31
|
3adant3 |
|- ( ( ph /\ y e. A /\ -. y = +oo ) -> y e. RR* ) |
| 178 |
|
nltpnft |
|- ( y e. RR* -> ( y = +oo <-> -. y < +oo ) ) |
| 179 |
177 178
|
syl |
|- ( ( ph /\ y e. A /\ -. y = +oo ) -> ( y = +oo <-> -. y < +oo ) ) |
| 180 |
176 179
|
mtbid |
|- ( ( ph /\ y e. A /\ -. y = +oo ) -> -. -. y < +oo ) |
| 181 |
180
|
notnotrd |
|- ( ( ph /\ y e. A /\ -. y = +oo ) -> y < +oo ) |
| 182 |
181
|
3adant1r |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ y e. A /\ -. y = +oo ) -> y < +oo ) |
| 183 |
182
|
ad5ant135 |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> y < +oo ) |
| 184 |
175 183
|
jca |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> ( -oo < y /\ y < +oo ) ) |
| 185 |
31
|
adantlr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ y e. A ) -> y e. RR* ) |
| 186 |
185
|
ad5ant13 |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> y e. RR* ) |
| 187 |
|
xrrebnd |
|- ( y e. RR* -> ( y e. RR <-> ( -oo < y /\ y < +oo ) ) ) |
| 188 |
186 187
|
syl |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> ( y e. RR <-> ( -oo < y /\ y < +oo ) ) ) |
| 189 |
184 188
|
mpbird |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> y e. RR ) |
| 190 |
|
simplr |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) |
| 191 |
121
|
ad2antrr |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> B e. RR ) |
| 192 |
|
simpr |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> y e. RR ) |
| 193 |
124
|
adantr |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> ( B - sup ( A , RR* , < ) ) e. RR ) |
| 194 |
|
rexadd |
|- ( ( y e. RR /\ ( B - sup ( A , RR* , < ) ) e. RR ) -> ( y +e ( B - sup ( A , RR* , < ) ) ) = ( y + ( B - sup ( A , RR* , < ) ) ) ) |
| 195 |
192 193 194
|
syl2anc |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> ( y +e ( B - sup ( A , RR* , < ) ) ) = ( y + ( B - sup ( A , RR* , < ) ) ) ) |
| 196 |
192 193
|
readdcld |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> ( y + ( B - sup ( A , RR* , < ) ) ) e. RR ) |
| 197 |
195 196
|
eqeltrd |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> ( y +e ( B - sup ( A , RR* , < ) ) ) e. RR ) |
| 198 |
197
|
adantr |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> ( y +e ( B - sup ( A , RR* , < ) ) ) e. RR ) |
| 199 |
|
simpr |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) |
| 200 |
191 198 191 199
|
ltsub1dd |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> ( B - B ) < ( ( y +e ( B - sup ( A , RR* , < ) ) ) - B ) ) |
| 201 |
121
|
recnd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> B e. CC ) |
| 202 |
201
|
subidd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( B - B ) = 0 ) |
| 203 |
202
|
ad2antrr |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> ( B - B ) = 0 ) |
| 204 |
201
|
adantr |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> B e. CC ) |
| 205 |
192
|
recnd |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> y e. CC ) |
| 206 |
122
|
recnd |
|- ( ( ph /\ sup ( A , RR* , < ) e. RR ) -> sup ( A , RR* , < ) e. CC ) |
| 207 |
206
|
ad2antrr |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> sup ( A , RR* , < ) e. CC ) |
| 208 |
205 207
|
subcld |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> ( y - sup ( A , RR* , < ) ) e. CC ) |
| 209 |
205 204 207
|
addsub12d |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> ( y + ( B - sup ( A , RR* , < ) ) ) = ( B + ( y - sup ( A , RR* , < ) ) ) ) |
| 210 |
195 209
|
eqtrd |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> ( y +e ( B - sup ( A , RR* , < ) ) ) = ( B + ( y - sup ( A , RR* , < ) ) ) ) |
| 211 |
204 208 210
|
mvrladdd |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) -> ( ( y +e ( B - sup ( A , RR* , < ) ) ) - B ) = ( y - sup ( A , RR* , < ) ) ) |
| 212 |
211
|
adantr |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> ( ( y +e ( B - sup ( A , RR* , < ) ) ) - B ) = ( y - sup ( A , RR* , < ) ) ) |
| 213 |
203 212
|
breq12d |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> ( ( B - B ) < ( ( y +e ( B - sup ( A , RR* , < ) ) ) - B ) <-> 0 < ( y - sup ( A , RR* , < ) ) ) ) |
| 214 |
200 213
|
mpbid |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> 0 < ( y - sup ( A , RR* , < ) ) ) |
| 215 |
123
|
ad2antrr |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> sup ( A , RR* , < ) e. RR ) |
| 216 |
|
simplr |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> y e. RR ) |
| 217 |
215 216
|
posdifd |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> ( sup ( A , RR* , < ) < y <-> 0 < ( y - sup ( A , RR* , < ) ) ) ) |
| 218 |
214 217
|
mpbird |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. RR ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> sup ( A , RR* , < ) < y ) |
| 219 |
155 189 190 218
|
syl21anc |
|- ( ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) /\ -. y = +oo ) -> sup ( A , RR* , < ) < y ) |
| 220 |
154 219
|
pm2.61dan |
|- ( ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) /\ B < ( y +e ( B - sup ( A , RR* , < ) ) ) ) -> sup ( A , RR* , < ) < y ) |
| 221 |
220
|
ex |
|- ( ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) /\ y e. A ) -> ( B < ( y +e ( B - sup ( A , RR* , < ) ) ) -> sup ( A , RR* , < ) < y ) ) |
| 222 |
221
|
reximdva |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> ( E. y e. A B < ( y +e ( B - sup ( A , RR* , < ) ) ) -> E. y e. A sup ( A , RR* , < ) < y ) ) |
| 223 |
146 222
|
mpd |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ sup ( A , RR* , < ) < B ) -> E. y e. A sup ( A , RR* , < ) < y ) |
| 224 |
80 87 223
|
syl2anc |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ -. B <_ sup ( A , RR* , < ) ) -> E. y e. A sup ( A , RR* , < ) < y ) |
| 225 |
59 33
|
syl |
|- ( ( ph /\ y e. A ) -> sup ( A , RR* , < ) e. RR* ) |
| 226 |
31 225
|
xrlenltd |
|- ( ( ph /\ y e. A ) -> ( y <_ sup ( A , RR* , < ) <-> -. sup ( A , RR* , < ) < y ) ) |
| 227 |
62 226
|
mpbid |
|- ( ( ph /\ y e. A ) -> -. sup ( A , RR* , < ) < y ) |
| 228 |
227
|
ralrimiva |
|- ( ph -> A. y e. A -. sup ( A , RR* , < ) < y ) |
| 229 |
|
ralnex |
|- ( A. y e. A -. sup ( A , RR* , < ) < y <-> -. E. y e. A sup ( A , RR* , < ) < y ) |
| 230 |
228 229
|
sylib |
|- ( ph -> -. E. y e. A sup ( A , RR* , < ) < y ) |
| 231 |
230
|
ad2antrr |
|- ( ( ( ph /\ sup ( A , RR* , < ) e. RR ) /\ -. B <_ sup ( A , RR* , < ) ) -> -. E. y e. A sup ( A , RR* , < ) < y ) |
| 232 |
224 231
|
condan |
|- ( ( ph /\ sup ( A , RR* , < ) e. RR ) -> B <_ sup ( A , RR* , < ) ) |
| 233 |
12 79 232
|
syl2anc |
|- ( ( ph /\ -. sup ( A , RR* , < ) = +oo ) -> B <_ sup ( A , RR* , < ) ) |
| 234 |
11 233
|
pm2.61dan |
|- ( ph -> B <_ sup ( A , RR* , < ) ) |