| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmetf |  |-  ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) | 
						
							| 2 |  | fdm |  |-  ( D : ( X X. X ) --> RR* -> dom D = ( X X. X ) ) | 
						
							| 3 |  | metreslem |  |-  ( dom D = ( X X. X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) | 
						
							| 4 | 1 2 3 | 3syl |  |-  ( D e. ( *Met ` X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) | 
						
							| 5 |  | inss1 |  |-  ( X i^i R ) C_ X | 
						
							| 6 |  | xmetres2 |  |-  ( ( D e. ( *Met ` X ) /\ ( X i^i R ) C_ X ) -> ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) e. ( *Met ` ( X i^i R ) ) ) | 
						
							| 7 | 5 6 | mpan2 |  |-  ( D e. ( *Met ` X ) -> ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) e. ( *Met ` ( X i^i R ) ) ) | 
						
							| 8 | 4 7 | eqeltrd |  |-  ( D e. ( *Met ` X ) -> ( D |` ( R X. R ) ) e. ( *Met ` ( X i^i R ) ) ) |