| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmetpsmet |
|- ( D e. ( *Met ` X ) -> D e. ( PsMet ` X ) ) |
| 2 |
|
psmetutop |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( topGen ` ran ( ball ` D ) ) ) |
| 3 |
1 2
|
sylan2 |
|- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( topGen ` ran ( ball ` D ) ) ) |
| 4 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
| 5 |
4
|
mopnval |
|- ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( topGen ` ran ( ball ` D ) ) ) |
| 6 |
5
|
adantl |
|- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( MetOpen ` D ) = ( topGen ` ran ( ball ` D ) ) ) |
| 7 |
3 6
|
eqtr4d |
|- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( MetOpen ` D ) ) |