| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
|
eleq1 |
|- ( A = (/) -> ( A e. _V <-> (/) e. _V ) ) |
| 3 |
1 2
|
mpbiri |
|- ( A = (/) -> A e. _V ) |
| 4 |
3
|
pm2.24d |
|- ( A = (/) -> ( -. A e. _V -> B e. _V ) ) |
| 5 |
4
|
a1d |
|- ( A = (/) -> ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) ) |
| 6 |
|
rnexg |
|- ( ( A X. B ) e. C -> ran ( A X. B ) e. _V ) |
| 7 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
| 8 |
7
|
eleq1d |
|- ( A =/= (/) -> ( ran ( A X. B ) e. _V <-> B e. _V ) ) |
| 9 |
6 8
|
imbitrid |
|- ( A =/= (/) -> ( ( A X. B ) e. C -> B e. _V ) ) |
| 10 |
9
|
a1dd |
|- ( A =/= (/) -> ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) ) |
| 11 |
5 10
|
pm2.61ine |
|- ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) |
| 12 |
11
|
orrd |
|- ( ( A X. B ) e. C -> ( A e. _V \/ B e. _V ) ) |