| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iineq1 |
|- ( A = (/) -> |^|_ x e. A B = |^|_ x e. (/) B ) |
| 2 |
|
0iin |
|- |^|_ x e. (/) B = _V |
| 3 |
1 2
|
eqtrdi |
|- ( A = (/) -> |^|_ x e. A B = _V ) |
| 4 |
3
|
ineq2d |
|- ( A = (/) -> ( D i^i |^|_ x e. A B ) = ( D i^i _V ) ) |
| 5 |
|
inv1 |
|- ( D i^i _V ) = D |
| 6 |
4 5
|
eqtrdi |
|- ( A = (/) -> ( D i^i |^|_ x e. A B ) = D ) |
| 7 |
6
|
xpeq2d |
|- ( A = (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( C X. D ) ) |
| 8 |
|
iineq1 |
|- ( A = (/) -> |^|_ x e. A ( C X. B ) = |^|_ x e. (/) ( C X. B ) ) |
| 9 |
|
0iin |
|- |^|_ x e. (/) ( C X. B ) = _V |
| 10 |
8 9
|
eqtrdi |
|- ( A = (/) -> |^|_ x e. A ( C X. B ) = _V ) |
| 11 |
10
|
ineq2d |
|- ( A = (/) -> ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) = ( ( C X. D ) i^i _V ) ) |
| 12 |
|
inv1 |
|- ( ( C X. D ) i^i _V ) = ( C X. D ) |
| 13 |
11 12
|
eqtrdi |
|- ( A = (/) -> ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) = ( C X. D ) ) |
| 14 |
7 13
|
eqtr4d |
|- ( A = (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
| 15 |
|
xpindi |
|- ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i ( C X. |^|_ x e. A B ) ) |
| 16 |
|
xpiindi |
|- ( A =/= (/) -> ( C X. |^|_ x e. A B ) = |^|_ x e. A ( C X. B ) ) |
| 17 |
16
|
ineq2d |
|- ( A =/= (/) -> ( ( C X. D ) i^i ( C X. |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
| 18 |
15 17
|
eqtrid |
|- ( A =/= (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
| 19 |
14 18
|
pm2.61ine |
|- ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) |