| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iineq1 | ⊢ ( 𝐴  =  ∅  →  ∩  𝑥  ∈  𝐴 𝐵  =  ∩  𝑥  ∈  ∅ 𝐵 ) | 
						
							| 2 |  | 0iin | ⊢ ∩  𝑥  ∈  ∅ 𝐵  =  V | 
						
							| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ∩  𝑥  ∈  𝐴 𝐵  =  V ) | 
						
							| 4 | 3 | ineq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝐷  ∩  ∩  𝑥  ∈  𝐴 𝐵 )  =  ( 𝐷  ∩  V ) ) | 
						
							| 5 |  | inv1 | ⊢ ( 𝐷  ∩  V )  =  𝐷 | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ( 𝐷  ∩  ∩  𝑥  ∈  𝐴 𝐵 )  =  𝐷 ) | 
						
							| 7 | 6 | xpeq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝐶  ×  ( 𝐷  ∩  ∩  𝑥  ∈  𝐴 𝐵 ) )  =  ( 𝐶  ×  𝐷 ) ) | 
						
							| 8 |  | iineq1 | ⊢ ( 𝐴  =  ∅  →  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 )  =  ∩  𝑥  ∈  ∅ ( 𝐶  ×  𝐵 ) ) | 
						
							| 9 |  | 0iin | ⊢ ∩  𝑥  ∈  ∅ ( 𝐶  ×  𝐵 )  =  V | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 )  =  V ) | 
						
							| 11 | 10 | ineq2d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐶  ×  𝐷 )  ∩  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) )  =  ( ( 𝐶  ×  𝐷 )  ∩  V ) ) | 
						
							| 12 |  | inv1 | ⊢ ( ( 𝐶  ×  𝐷 )  ∩  V )  =  ( 𝐶  ×  𝐷 ) | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐶  ×  𝐷 )  ∩  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) )  =  ( 𝐶  ×  𝐷 ) ) | 
						
							| 14 | 7 13 | eqtr4d | ⊢ ( 𝐴  =  ∅  →  ( 𝐶  ×  ( 𝐷  ∩  ∩  𝑥  ∈  𝐴 𝐵 ) )  =  ( ( 𝐶  ×  𝐷 )  ∩  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) ) ) | 
						
							| 15 |  | xpindi | ⊢ ( 𝐶  ×  ( 𝐷  ∩  ∩  𝑥  ∈  𝐴 𝐵 ) )  =  ( ( 𝐶  ×  𝐷 )  ∩  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 16 |  | xpiindi | ⊢ ( 𝐴  ≠  ∅  →  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 )  =  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) ) | 
						
							| 17 | 16 | ineq2d | ⊢ ( 𝐴  ≠  ∅  →  ( ( 𝐶  ×  𝐷 )  ∩  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 ) )  =  ( ( 𝐶  ×  𝐷 )  ∩  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) ) ) | 
						
							| 18 | 15 17 | eqtrid | ⊢ ( 𝐴  ≠  ∅  →  ( 𝐶  ×  ( 𝐷  ∩  ∩  𝑥  ∈  𝐴 𝐵 ) )  =  ( ( 𝐶  ×  𝐷 )  ∩  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) ) ) | 
						
							| 19 | 14 18 | pm2.61ine | ⊢ ( 𝐶  ×  ( 𝐷  ∩  ∩  𝑥  ∈  𝐴 𝐵 ) )  =  ( ( 𝐶  ×  𝐷 )  ∩  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) ) |