| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relxp | 
							⊢ Rel  ( 𝐶  ×  𝐵 )  | 
						
						
							| 2 | 
							
								1
							 | 
							rgenw | 
							⊢ ∀ 𝑥  ∈  𝐴 Rel  ( 𝐶  ×  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							r19.2z | 
							⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 Rel  ( 𝐶  ×  𝐵 ) )  →  ∃ 𝑥  ∈  𝐴 Rel  ( 𝐶  ×  𝐵 ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpan2 | 
							⊢ ( 𝐴  ≠  ∅  →  ∃ 𝑥  ∈  𝐴 Rel  ( 𝐶  ×  𝐵 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							reliin | 
							⊢ ( ∃ 𝑥  ∈  𝐴 Rel  ( 𝐶  ×  𝐵 )  →  Rel  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							⊢ ( 𝐴  ≠  ∅  →  Rel  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							relxp | 
							⊢ Rel  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							jctil | 
							⊢ ( 𝐴  ≠  ∅  →  ( Rel  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 )  ∧  Rel  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							r19.28zv | 
							⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐶  ∧  ∀ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							bicomd | 
							⊢ ( 𝐴  ≠  ∅  →  ( ( 𝑦  ∈  𝐶  ∧  ∀ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐵 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eliin | 
							⊢ ( 𝑧  ∈  V  →  ( 𝑧  ∈  ∩  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							elv | 
							⊢ ( 𝑧  ∈  ∩  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								12
							 | 
							anbi2i | 
							⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  ↔  ( 𝑦  ∈  𝐶  ∧  ∀ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							opelxp | 
							⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  ( 𝐶  ×  𝐵 )  ↔  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐵 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  𝐴 〈 𝑦 ,  𝑧 〉  ∈  ( 𝐶  ×  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐵 ) )  | 
						
						
							| 16 | 
							
								10 13 15
							 | 
							3bitr4g | 
							⊢ ( 𝐴  ≠  ∅  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 〈 𝑦 ,  𝑧 〉  ∈  ( 𝐶  ×  𝐵 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							opelxp | 
							⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 )  ↔  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  ∩  𝑥  ∈  𝐴 𝐵 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							opex | 
							⊢ 〈 𝑦 ,  𝑧 〉  ∈  V  | 
						
						
							| 19 | 
							
								
							 | 
							eliin | 
							⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  V  →  ( 〈 𝑦 ,  𝑧 〉  ∈  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 〈 𝑦 ,  𝑧 〉  ∈  ( 𝐶  ×  𝐵 ) ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							ax-mp | 
							⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 〈 𝑦 ,  𝑧 〉  ∈  ( 𝐶  ×  𝐵 ) )  | 
						
						
							| 21 | 
							
								16 17 20
							 | 
							3bitr4g | 
							⊢ ( 𝐴  ≠  ∅  →  ( 〈 𝑦 ,  𝑧 〉  ∈  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 )  ↔  〈 𝑦 ,  𝑧 〉  ∈  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqrelrdv2 | 
							⊢ ( ( ( Rel  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 )  ∧  Rel  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) )  ∧  𝐴  ≠  ∅ )  →  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 )  =  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) )  | 
						
						
							| 23 | 
							
								8 22
							 | 
							mpancom | 
							⊢ ( 𝐴  ≠  ∅  →  ( 𝐶  ×  ∩  𝑥  ∈  𝐴 𝐵 )  =  ∩  𝑥  ∈  𝐴 ( 𝐶  ×  𝐵 ) )  |