| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmodzxz.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
| 2 |
|
zlmodzxz.o |
|- .0. = { <. 0 , 0 >. , <. 1 , 0 >. } |
| 3 |
|
c0ex |
|- 0 e. _V |
| 4 |
|
1ex |
|- 1 e. _V |
| 5 |
|
xpprsng |
|- ( ( 0 e. _V /\ 1 e. _V /\ 0 e. _V ) -> ( { 0 , 1 } X. { 0 } ) = { <. 0 , 0 >. , <. 1 , 0 >. } ) |
| 6 |
3 4 3 5
|
mp3an |
|- ( { 0 , 1 } X. { 0 } ) = { <. 0 , 0 >. , <. 1 , 0 >. } |
| 7 |
|
zringring |
|- ZZring e. Ring |
| 8 |
|
prex |
|- { 0 , 1 } e. _V |
| 9 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
| 10 |
1 9
|
frlm0 |
|- ( ( ZZring e. Ring /\ { 0 , 1 } e. _V ) -> ( { 0 , 1 } X. { 0 } ) = ( 0g ` Z ) ) |
| 11 |
7 8 10
|
mp2an |
|- ( { 0 , 1 } X. { 0 } ) = ( 0g ` Z ) |
| 12 |
2 6 11
|
3eqtr2i |
|- .0. = ( 0g ` Z ) |