Metamath Proof Explorer


Theorem zlmodzxz0

Description: The 0 of the ZZ-module ZZ X. ZZ . (Contributed by AV, 20-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxz.z
|- Z = ( ZZring freeLMod { 0 , 1 } )
zlmodzxz.o
|- .0. = { <. 0 , 0 >. , <. 1 , 0 >. }
Assertion zlmodzxz0
|- .0. = ( 0g ` Z )

Proof

Step Hyp Ref Expression
1 zlmodzxz.z
 |-  Z = ( ZZring freeLMod { 0 , 1 } )
2 zlmodzxz.o
 |-  .0. = { <. 0 , 0 >. , <. 1 , 0 >. }
3 c0ex
 |-  0 e. _V
4 1ex
 |-  1 e. _V
5 xpprsng
 |-  ( ( 0 e. _V /\ 1 e. _V /\ 0 e. _V ) -> ( { 0 , 1 } X. { 0 } ) = { <. 0 , 0 >. , <. 1 , 0 >. } )
6 3 4 3 5 mp3an
 |-  ( { 0 , 1 } X. { 0 } ) = { <. 0 , 0 >. , <. 1 , 0 >. }
7 zringring
 |-  ZZring e. Ring
8 prex
 |-  { 0 , 1 } e. _V
9 zring0
 |-  0 = ( 0g ` ZZring )
10 1 9 frlm0
 |-  ( ( ZZring e. Ring /\ { 0 , 1 } e. _V ) -> ( { 0 , 1 } X. { 0 } ) = ( 0g ` Z ) )
11 7 8 10 mp2an
 |-  ( { 0 , 1 } X. { 0 } ) = ( 0g ` Z )
12 2 6 11 3eqtr2i
 |-  .0. = ( 0g ` Z )