Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxz.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxz.o |
|- .0. = { <. 0 , 0 >. , <. 1 , 0 >. } |
3 |
|
c0ex |
|- 0 e. _V |
4 |
|
1ex |
|- 1 e. _V |
5 |
|
xpprsng |
|- ( ( 0 e. _V /\ 1 e. _V /\ 0 e. _V ) -> ( { 0 , 1 } X. { 0 } ) = { <. 0 , 0 >. , <. 1 , 0 >. } ) |
6 |
3 4 3 5
|
mp3an |
|- ( { 0 , 1 } X. { 0 } ) = { <. 0 , 0 >. , <. 1 , 0 >. } |
7 |
|
zringring |
|- ZZring e. Ring |
8 |
|
prex |
|- { 0 , 1 } e. _V |
9 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
10 |
1 9
|
frlm0 |
|- ( ( ZZring e. Ring /\ { 0 , 1 } e. _V ) -> ( { 0 , 1 } X. { 0 } ) = ( 0g ` Z ) ) |
11 |
7 8 10
|
mp2an |
|- ( { 0 , 1 } X. { 0 } ) = ( 0g ` Z ) |
12 |
2 6 11
|
3eqtr2i |
|- .0. = ( 0g ` Z ) |