Metamath Proof Explorer


Theorem zlmodzxz0

Description: The 0 of the ZZ-module ZZ X. ZZ . (Contributed by AV, 20-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxz.z Z = ring freeLMod 0 1
zlmodzxz.o 0 ˙ = 0 0 1 0
Assertion zlmodzxz0 0 ˙ = 0 Z

Proof

Step Hyp Ref Expression
1 zlmodzxz.z Z = ring freeLMod 0 1
2 zlmodzxz.o 0 ˙ = 0 0 1 0
3 c0ex 0 V
4 1ex 1 V
5 xpprsng 0 V 1 V 0 V 0 1 × 0 = 0 0 1 0
6 3 4 3 5 mp3an 0 1 × 0 = 0 0 1 0
7 zringring ring Ring
8 prex 0 1 V
9 zring0 0 = 0 ring
10 1 9 frlm0 ring Ring 0 1 V 0 1 × 0 = 0 Z
11 7 8 10 mp2an 0 1 × 0 = 0 Z
12 2 6 11 3eqtr2i 0 ˙ = 0 Z