Metamath Proof Explorer


Theorem zlmodzxz0

Description: The 0 of the ZZ-module ZZ X. ZZ . (Contributed by AV, 20-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxz.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
zlmodzxz.o 0 = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ }
Assertion zlmodzxz0 0 = ( 0g𝑍 )

Proof

Step Hyp Ref Expression
1 zlmodzxz.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
2 zlmodzxz.o 0 = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ }
3 c0ex 0 ∈ V
4 1ex 1 ∈ V
5 xpprsng ( ( 0 ∈ V ∧ 1 ∈ V ∧ 0 ∈ V ) → ( { 0 , 1 } × { 0 } ) = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } )
6 3 4 3 5 mp3an ( { 0 , 1 } × { 0 } ) = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ }
7 zringring ring ∈ Ring
8 prex { 0 , 1 } ∈ V
9 zring0 0 = ( 0g ‘ ℤring )
10 1 9 frlm0 ( ( ℤring ∈ Ring ∧ { 0 , 1 } ∈ V ) → ( { 0 , 1 } × { 0 } ) = ( 0g𝑍 ) )
11 7 8 10 mp2an ( { 0 , 1 } × { 0 } ) = ( 0g𝑍 )
12 2 6 11 3eqtr2i 0 = ( 0g𝑍 )