Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxz.z |
⊢ 𝑍 = ( ℤring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxz.o |
⊢ 0 = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } |
3 |
|
c0ex |
⊢ 0 ∈ V |
4 |
|
1ex |
⊢ 1 ∈ V |
5 |
|
xpprsng |
⊢ ( ( 0 ∈ V ∧ 1 ∈ V ∧ 0 ∈ V ) → ( { 0 , 1 } × { 0 } ) = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } ) |
6 |
3 4 3 5
|
mp3an |
⊢ ( { 0 , 1 } × { 0 } ) = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } |
7 |
|
zringring |
⊢ ℤring ∈ Ring |
8 |
|
prex |
⊢ { 0 , 1 } ∈ V |
9 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
10 |
1 9
|
frlm0 |
⊢ ( ( ℤring ∈ Ring ∧ { 0 , 1 } ∈ V ) → ( { 0 , 1 } × { 0 } ) = ( 0g ‘ 𝑍 ) ) |
11 |
7 8 10
|
mp2an |
⊢ ( { 0 , 1 } × { 0 } ) = ( 0g ‘ 𝑍 ) |
12 |
2 6 11
|
3eqtr2i |
⊢ 0 = ( 0g ‘ 𝑍 ) |