| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znsqcld.1 |
|- ( ph -> N e. ZZ ) |
| 2 |
|
znsqcld.2 |
|- ( ph -> N =/= 0 ) |
| 3 |
1
|
zcnd |
|- ( ph -> N e. CC ) |
| 4 |
|
2z |
|- 2 e. ZZ |
| 5 |
4
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 6 |
3 2 5
|
expne0d |
|- ( ph -> ( N ^ 2 ) =/= 0 ) |
| 7 |
6
|
neneqd |
|- ( ph -> -. ( N ^ 2 ) = 0 ) |
| 8 |
|
zsqcl2 |
|- ( N e. ZZ -> ( N ^ 2 ) e. NN0 ) |
| 9 |
1 8
|
syl |
|- ( ph -> ( N ^ 2 ) e. NN0 ) |
| 10 |
|
elnn0 |
|- ( ( N ^ 2 ) e. NN0 <-> ( ( N ^ 2 ) e. NN \/ ( N ^ 2 ) = 0 ) ) |
| 11 |
9 10
|
sylib |
|- ( ph -> ( ( N ^ 2 ) e. NN \/ ( N ^ 2 ) = 0 ) ) |
| 12 |
11
|
orcomd |
|- ( ph -> ( ( N ^ 2 ) = 0 \/ ( N ^ 2 ) e. NN ) ) |
| 13 |
12
|
ord |
|- ( ph -> ( -. ( N ^ 2 ) = 0 -> ( N ^ 2 ) e. NN ) ) |
| 14 |
7 13
|
mpd |
|- ( ph -> ( N ^ 2 ) e. NN ) |