Metamath Proof Explorer


Theorem 0crct

Description: A pair of an empty set (of edges) and a second set (of vertices) is a circuit if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021) (Revised by AV, 30-Oct-2021)

Ref Expression
Assertion 0crct GWCircuitsGPP:00VtxG

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 0trl GWTrailsGPP:00VtxG
3 2 anbi1d GWTrailsGPP0=PP:00VtxGP0=P
4 iscrct CircuitsGPTrailsGPP0=P
5 hash0 =0
6 5 eqcomi 0=
7 6 a1i P:00VtxG0=
8 7 fveq2d P:00VtxGP0=P
9 8 pm4.71i P:00VtxGP:00VtxGP0=P
10 3 4 9 3bitr4g GWCircuitsGPP:00VtxG