Metamath Proof Explorer


Theorem 0el

Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004)

Ref Expression
Assertion 0el AxAy¬yx

Proof

Step Hyp Ref Expression
1 risset AxAx=
2 eq0 x=y¬yx
3 2 rexbii xAx=xAy¬yx
4 1 3 bitri AxAy¬yx