Metamath Proof Explorer


Theorem 0elaxnul

Description: A class that contains the empty set models the Null Set Axiom ax-nul . (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion 0elaxnul M x M y M ¬ y x

Proof

Step Hyp Ref Expression
1 noel ¬ y
2 1 rgenw y M ¬ y
3 eleq2 x = y x y
4 3 notbid x = ¬ y x ¬ y
5 4 ralbidv x = y M ¬ y x y M ¬ y
6 5 rspcev M y M ¬ y x M y M ¬ y x
7 2 6 mpan2 M x M y M ¬ y x