Description: A class that contains the empty set models the Null Set Axiom ax-nul . (Contributed by Eric Schmidt, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0elaxnul | ⊢ ( ∅ ∈ 𝑀 → ∃ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | rgenw | ⊢ ∀ 𝑦 ∈ 𝑀 ¬ 𝑦 ∈ ∅ |
| 3 | eleq2 | ⊢ ( 𝑥 = ∅ → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ∅ ) ) | |
| 4 | 3 | notbid | ⊢ ( 𝑥 = ∅ → ( ¬ 𝑦 ∈ 𝑥 ↔ ¬ 𝑦 ∈ ∅ ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑀 ¬ 𝑦 ∈ ∅ ) ) |
| 6 | 5 | rspcev | ⊢ ( ( ∅ ∈ 𝑀 ∧ ∀ 𝑦 ∈ 𝑀 ¬ 𝑦 ∈ ∅ ) → ∃ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥 ) |
| 7 | 2 6 | mpan2 | ⊢ ( ∅ ∈ 𝑀 → ∃ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥 ) |