Metamath Proof Explorer


Theorem 0elaxnul

Description: A class that contains the empty set models the Null Set Axiom ax-nul . (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion 0elaxnul ( ∅ ∈ 𝑀 → ∃ 𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 noel ¬ 𝑦 ∈ ∅
2 1 rgenw 𝑦𝑀 ¬ 𝑦 ∈ ∅
3 eleq2 ( 𝑥 = ∅ → ( 𝑦𝑥𝑦 ∈ ∅ ) )
4 3 notbid ( 𝑥 = ∅ → ( ¬ 𝑦𝑥 ↔ ¬ 𝑦 ∈ ∅ ) )
5 4 ralbidv ( 𝑥 = ∅ → ( ∀ 𝑦𝑀 ¬ 𝑦𝑥 ↔ ∀ 𝑦𝑀 ¬ 𝑦 ∈ ∅ ) )
6 5 rspcev ( ( ∅ ∈ 𝑀 ∧ ∀ 𝑦𝑀 ¬ 𝑦 ∈ ∅ ) → ∃ 𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥 )
7 2 6 mpan2 ( ∅ ∈ 𝑀 → ∃ 𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥 )