| Step |
Hyp |
Ref |
Expression |
| 1 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 𝑥 ↔ 𝑧 ⊆ 𝑥 ) |
| 2 |
|
ssabso |
⊢ ( ( Tr 𝑀 ∧ 𝑧 ∈ 𝑀 ) → ( 𝑧 ⊆ 𝑥 ↔ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ) ) |
| 3 |
1 2
|
bitrid |
⊢ ( ( Tr 𝑀 ∧ 𝑧 ∈ 𝑀 ) → ( 𝑧 ∈ 𝒫 𝑥 ↔ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ) ) |
| 4 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ↔ ( 𝑧 ∈ 𝒫 𝑥 ∧ 𝑧 ∈ 𝑀 ) ) |
| 5 |
4
|
simplbi2com |
⊢ ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝒫 𝑥 → 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ) ) |
| 6 |
5
|
adantl |
⊢ ( ( Tr 𝑀 ∧ 𝑧 ∈ 𝑀 ) → ( 𝑧 ∈ 𝒫 𝑥 → 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ) ) |
| 7 |
3 6
|
sylbird |
⊢ ( ( Tr 𝑀 ∧ 𝑧 ∈ 𝑀 ) → ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ) ) |
| 8 |
7
|
ralrimiva |
⊢ ( Tr 𝑀 → ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ) ) |
| 9 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝒫 𝑥 ∩ 𝑀 ) → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑦 = ( 𝒫 𝑥 ∩ 𝑀 ) → ( ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ) ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑦 = ( 𝒫 𝑥 ∩ 𝑀 ) → ( ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ) ) ) |
| 12 |
11
|
rspcev |
⊢ ( ( ( 𝒫 𝑥 ∩ 𝑀 ) ∈ 𝑀 ∧ ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥 ∩ 𝑀 ) ) ) → ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 13 |
8 12
|
sylan2 |
⊢ ( ( ( 𝒫 𝑥 ∩ 𝑀 ) ∈ 𝑀 ∧ Tr 𝑀 ) → ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 14 |
13
|
expcom |
⊢ ( Tr 𝑀 → ( ( 𝒫 𝑥 ∩ 𝑀 ) ∈ 𝑀 → ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) ) |
| 15 |
14
|
ralimdv |
⊢ ( Tr 𝑀 → ( ∀ 𝑥 ∈ 𝑀 ( 𝒫 𝑥 ∩ 𝑀 ) ∈ 𝑀 → ∀ 𝑥 ∈ 𝑀 ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) ) |
| 16 |
15
|
imp |
⊢ ( ( Tr 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ( 𝒫 𝑥 ∩ 𝑀 ) ∈ 𝑀 ) → ∀ 𝑥 ∈ 𝑀 ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |