Metamath Proof Explorer


Theorem pwclaxpow

Description: Suppose M is a transitive class that is closed under power sets intersected with M . Then, M models the Axiom of Power Sets ax-pow . One direction of Lemma II.2.8 of Kunen2 p. 113. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion pwclaxpow ( ( Tr 𝑀 ∧ ∀ 𝑥𝑀 ( 𝒫 𝑥𝑀 ) ∈ 𝑀 ) → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 velpw ( 𝑧 ∈ 𝒫 𝑥𝑧𝑥 )
2 ssabso ( ( Tr 𝑀𝑧𝑀 ) → ( 𝑧𝑥 ↔ ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) ) )
3 1 2 bitrid ( ( Tr 𝑀𝑧𝑀 ) → ( 𝑧 ∈ 𝒫 𝑥 ↔ ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) ) )
4 elin ( 𝑧 ∈ ( 𝒫 𝑥𝑀 ) ↔ ( 𝑧 ∈ 𝒫 𝑥𝑧𝑀 ) )
5 4 simplbi2com ( 𝑧𝑀 → ( 𝑧 ∈ 𝒫 𝑥𝑧 ∈ ( 𝒫 𝑥𝑀 ) ) )
6 5 adantl ( ( Tr 𝑀𝑧𝑀 ) → ( 𝑧 ∈ 𝒫 𝑥𝑧 ∈ ( 𝒫 𝑥𝑀 ) ) )
7 3 6 sylbird ( ( Tr 𝑀𝑧𝑀 ) → ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥𝑀 ) ) )
8 7 ralrimiva ( Tr 𝑀 → ∀ 𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥𝑀 ) ) )
9 eleq2 ( 𝑦 = ( 𝒫 𝑥𝑀 ) → ( 𝑧𝑦𝑧 ∈ ( 𝒫 𝑥𝑀 ) ) )
10 9 imbi2d ( 𝑦 = ( 𝒫 𝑥𝑀 ) → ( ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) ↔ ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥𝑀 ) ) ) )
11 10 ralbidv ( 𝑦 = ( 𝒫 𝑥𝑀 ) → ( ∀ 𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) ↔ ∀ 𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥𝑀 ) ) ) )
12 11 rspcev ( ( ( 𝒫 𝑥𝑀 ) ∈ 𝑀 ∧ ∀ 𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧 ∈ ( 𝒫 𝑥𝑀 ) ) ) → ∃ 𝑦𝑀𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
13 8 12 sylan2 ( ( ( 𝒫 𝑥𝑀 ) ∈ 𝑀 ∧ Tr 𝑀 ) → ∃ 𝑦𝑀𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
14 13 expcom ( Tr 𝑀 → ( ( 𝒫 𝑥𝑀 ) ∈ 𝑀 → ∃ 𝑦𝑀𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) ) )
15 14 ralimdv ( Tr 𝑀 → ( ∀ 𝑥𝑀 ( 𝒫 𝑥𝑀 ) ∈ 𝑀 → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) ) )
16 15 imp ( ( Tr 𝑀 ∧ ∀ 𝑥𝑀 ( 𝒫 𝑥𝑀 ) ∈ 𝑀 ) → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ∀ 𝑤𝑀 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )