Metamath Proof Explorer


Theorem 0elros

Description: A ring of sets contains the empty set. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis isros.1 Q=s𝒫𝒫O|sxsysxysxys
Assertion 0elros SQS

Proof

Step Hyp Ref Expression
1 isros.1 Q=s𝒫𝒫O|sxsysxysxys
2 1 isros SQS𝒫𝒫OSuSvSuvSuvS
3 2 simp2bi SQS