Metamath Proof Explorer


Theorem 0ewlk

Description: The empty set (empty sequence of edges) is an s-walk of edges for all s. (Contributed by AV, 4-Jan-2021)

Ref Expression
Assertion 0ewlk G V S 0 * G EdgWalks S

Proof

Step Hyp Ref Expression
1 wrd0 Word dom iEdg G
2 ral0 k S iEdg G k 1 iEdg G k
3 hash0 = 0
4 3 oveq2i 1 ..^ = 1 ..^ 0
5 0le1 0 1
6 1z 1
7 0z 0
8 fzon 1 0 0 1 1 ..^ 0 =
9 6 7 8 mp2an 0 1 1 ..^ 0 =
10 5 9 mpbi 1 ..^ 0 =
11 4 10 eqtri 1 ..^ =
12 11 raleqi k 1 ..^ S iEdg G k 1 iEdg G k k S iEdg G k 1 iEdg G k
13 2 12 mpbir k 1 ..^ S iEdg G k 1 iEdg G k
14 1 13 pm3.2i Word dom iEdg G k 1 ..^ S iEdg G k 1 iEdg G k
15 0ex V
16 eqid iEdg G = iEdg G
17 16 isewlk G V S 0 * V G EdgWalks S Word dom iEdg G k 1 ..^ S iEdg G k 1 iEdg G k
18 15 17 mp3an3 G V S 0 * G EdgWalks S Word dom iEdg G k 1 ..^ S iEdg G k 1 iEdg G k
19 14 18 mpbiri G V S 0 * G EdgWalks S