Metamath Proof Explorer


Theorem isewlk

Description: Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021)

Ref Expression
Hypothesis ewlksfval.i I = iEdg G
Assertion isewlk G W S 0 * F U F G EdgWalks S F Word dom I k 1 ..^ F S I F k 1 I F k

Proof

Step Hyp Ref Expression
1 ewlksfval.i I = iEdg G
2 1 ewlksfval G W S 0 * G EdgWalks S = f | f Word dom I k 1 ..^ f S I f k 1 I f k
3 2 3adant3 G W S 0 * F U G EdgWalks S = f | f Word dom I k 1 ..^ f S I f k 1 I f k
4 3 eleq2d G W S 0 * F U F G EdgWalks S F f | f Word dom I k 1 ..^ f S I f k 1 I f k
5 eleq1 f = F f Word dom I F Word dom I
6 fveq2 f = F f = F
7 6 oveq2d f = F 1 ..^ f = 1 ..^ F
8 fveq1 f = F f k 1 = F k 1
9 8 fveq2d f = F I f k 1 = I F k 1
10 fveq1 f = F f k = F k
11 10 fveq2d f = F I f k = I F k
12 9 11 ineq12d f = F I f k 1 I f k = I F k 1 I F k
13 12 fveq2d f = F I f k 1 I f k = I F k 1 I F k
14 13 breq2d f = F S I f k 1 I f k S I F k 1 I F k
15 7 14 raleqbidv f = F k 1 ..^ f S I f k 1 I f k k 1 ..^ F S I F k 1 I F k
16 5 15 anbi12d f = F f Word dom I k 1 ..^ f S I f k 1 I f k F Word dom I k 1 ..^ F S I F k 1 I F k
17 16 elabg F U F f | f Word dom I k 1 ..^ f S I f k 1 I f k F Word dom I k 1 ..^ F S I F k 1 I F k
18 17 3ad2ant3 G W S 0 * F U F f | f Word dom I k 1 ..^ f S I f k 1 I f k F Word dom I k 1 ..^ F S I F k 1 I F k
19 4 18 bitrd G W S 0 * F U F G EdgWalks S F Word dom I k 1 ..^ F S I F k 1 I F k