Metamath Proof Explorer


Theorem 0ewlk

Description: The empty set (empty sequence of edges) is an s-walk of edges for all s. (Contributed by AV, 4-Jan-2021)

Ref Expression
Assertion 0ewlk ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ∅ ∈ ( 𝐺 EdgWalks 𝑆 ) )

Proof

Step Hyp Ref Expression
1 wrd0 ∅ ∈ Word dom ( iEdg ‘ 𝐺 )
2 ral0 𝑘 ∈ ∅ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) )
3 hash0 ( ♯ ‘ ∅ ) = 0
4 3 oveq2i ( 1 ..^ ( ♯ ‘ ∅ ) ) = ( 1 ..^ 0 )
5 0le1 0 ≤ 1
6 1z 1 ∈ ℤ
7 0z 0 ∈ ℤ
8 fzon ( ( 1 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 0 ≤ 1 ↔ ( 1 ..^ 0 ) = ∅ ) )
9 6 7 8 mp2an ( 0 ≤ 1 ↔ ( 1 ..^ 0 ) = ∅ )
10 5 9 mpbi ( 1 ..^ 0 ) = ∅
11 4 10 eqtri ( 1 ..^ ( ♯ ‘ ∅ ) ) = ∅
12 11 raleqi ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ∅ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) )
13 2 12 mpbir 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) )
14 1 13 pm3.2i ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) )
15 0ex ∅ ∈ V
16 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
17 16 isewlk ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ ∅ ∈ V ) → ( ∅ ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) )
18 15 17 mp3an3 ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( ∅ ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) )
19 14 18 mpbiri ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ∅ ∈ ( 𝐺 EdgWalks 𝑆 ) )