| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrd0 | ⊢ ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | ral0 | ⊢ ∀ 𝑘  ∈  ∅ 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) | 
						
							| 3 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 4 | 3 | oveq2i | ⊢ ( 1 ..^ ( ♯ ‘ ∅ ) )  =  ( 1 ..^ 0 ) | 
						
							| 5 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 6 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 7 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 8 |  | fzon | ⊢ ( ( 1  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( 0  ≤  1  ↔  ( 1 ..^ 0 )  =  ∅ ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( 0  ≤  1  ↔  ( 1 ..^ 0 )  =  ∅ ) | 
						
							| 10 | 5 9 | mpbi | ⊢ ( 1 ..^ 0 )  =  ∅ | 
						
							| 11 | 4 10 | eqtri | ⊢ ( 1 ..^ ( ♯ ‘ ∅ ) )  =  ∅ | 
						
							| 12 | 11 | raleqi | ⊢ ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) )  ↔  ∀ 𝑘  ∈  ∅ 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) | 
						
							| 13 | 2 12 | mpbir | ⊢ ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) | 
						
							| 14 | 1 13 | pm3.2i | ⊢ ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) | 
						
							| 15 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 16 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 17 | 16 | isewlk | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0*  ∧  ∅  ∈  V )  →  ( ∅  ∈  ( 𝐺  EdgWalks  𝑆 )  ↔  ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 18 | 15 17 | mp3an3 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  →  ( ∅  ∈  ( 𝐺  EdgWalks  𝑆 )  ↔  ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 19 | 14 18 | mpbiri | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  →  ∅  ∈  ( 𝐺  EdgWalks  𝑆 ) ) |