Step |
Hyp |
Ref |
Expression |
1 |
|
wrd0 |
⊢ ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) |
2 |
|
ral0 |
⊢ ∀ 𝑘 ∈ ∅ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) |
3 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
4 |
3
|
oveq2i |
⊢ ( 1 ..^ ( ♯ ‘ ∅ ) ) = ( 1 ..^ 0 ) |
5 |
|
0le1 |
⊢ 0 ≤ 1 |
6 |
|
1z |
⊢ 1 ∈ ℤ |
7 |
|
0z |
⊢ 0 ∈ ℤ |
8 |
|
fzon |
⊢ ( ( 1 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 0 ≤ 1 ↔ ( 1 ..^ 0 ) = ∅ ) ) |
9 |
6 7 8
|
mp2an |
⊢ ( 0 ≤ 1 ↔ ( 1 ..^ 0 ) = ∅ ) |
10 |
5 9
|
mpbi |
⊢ ( 1 ..^ 0 ) = ∅ |
11 |
4 10
|
eqtri |
⊢ ( 1 ..^ ( ♯ ‘ ∅ ) ) = ∅ |
12 |
11
|
raleqi |
⊢ ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ∅ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) |
13 |
2 12
|
mpbir |
⊢ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) |
14 |
1 13
|
pm3.2i |
⊢ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) |
15 |
|
0ex |
⊢ ∅ ∈ V |
16 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
17 |
16
|
isewlk |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ ∅ ∈ V ) → ( ∅ ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) ) |
18 |
15 17
|
mp3an3 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ( ∅ ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ ∅ ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) ) |
19 |
14 18
|
mpbiri |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) → ∅ ∈ ( 𝐺 EdgWalks 𝑆 ) ) |