Step |
Hyp |
Ref |
Expression |
1 |
|
s1cl |
⊢ ( 𝐼 ∈ dom ( iEdg ‘ 𝐺 ) → 〈“ 𝐼 ”〉 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom ( iEdg ‘ 𝐺 ) ) → 〈“ 𝐼 ”〉 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
3 |
|
ral0 |
⊢ ∀ 𝑘 ∈ ∅ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ 𝑘 ) ) ) ) |
4 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐼 ”〉 ) = 1 |
5 |
4
|
oveq2i |
⊢ ( 1 ..^ ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) = ( 1 ..^ 1 ) |
6 |
|
fzo0 |
⊢ ( 1 ..^ 1 ) = ∅ |
7 |
5 6
|
eqtri |
⊢ ( 1 ..^ ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) = ∅ |
8 |
7
|
a1i |
⊢ ( 𝐼 ∈ dom ( iEdg ‘ 𝐺 ) → ( 1 ..^ ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) = ∅ ) |
9 |
8
|
raleqdv |
⊢ ( 𝐼 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ∅ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ 𝑘 ) ) ) ) ) ) |
10 |
3 9
|
mpbiri |
⊢ ( 𝐼 ∈ dom ( iEdg ‘ 𝐺 ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ 𝑘 ) ) ) ) ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom ( iEdg ‘ 𝐺 ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ 𝑘 ) ) ) ) ) |
12 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
13 |
12
|
isewlk |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 〈“ 𝐼 ”〉 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( 〈“ 𝐼 ”〉 ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( 〈“ 𝐼 ”〉 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ 𝑘 ) ) ) ) ) ) ) |
14 |
1 13
|
syl3an3 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 〈“ 𝐼 ”〉 ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( 〈“ 𝐼 ”〉 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 〈“ 𝐼 ”〉 ‘ 𝑘 ) ) ) ) ) ) ) |
15 |
2 11 14
|
mpbir2and |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom ( iEdg ‘ 𝐺 ) ) → 〈“ 𝐼 ”〉 ∈ ( 𝐺 EdgWalks 𝑆 ) ) |