| Step | Hyp | Ref | Expression | 
						
							| 1 |  | s1cl |  |-  ( I e. dom ( iEdg ` G ) -> <" I "> e. Word dom ( iEdg ` G ) ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( G e. _V /\ S e. NN0* /\ I e. dom ( iEdg ` G ) ) -> <" I "> e. Word dom ( iEdg ` G ) ) | 
						
							| 3 |  | ral0 |  |-  A. k e. (/) S <_ ( # ` ( ( ( iEdg ` G ) ` ( <" I "> ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( <" I "> ` k ) ) ) ) | 
						
							| 4 |  | s1len |  |-  ( # ` <" I "> ) = 1 | 
						
							| 5 | 4 | oveq2i |  |-  ( 1 ..^ ( # ` <" I "> ) ) = ( 1 ..^ 1 ) | 
						
							| 6 |  | fzo0 |  |-  ( 1 ..^ 1 ) = (/) | 
						
							| 7 | 5 6 | eqtri |  |-  ( 1 ..^ ( # ` <" I "> ) ) = (/) | 
						
							| 8 | 7 | a1i |  |-  ( I e. dom ( iEdg ` G ) -> ( 1 ..^ ( # ` <" I "> ) ) = (/) ) | 
						
							| 9 | 8 | raleqdv |  |-  ( I e. dom ( iEdg ` G ) -> ( A. k e. ( 1 ..^ ( # ` <" I "> ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( <" I "> ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( <" I "> ` k ) ) ) ) <-> A. k e. (/) S <_ ( # ` ( ( ( iEdg ` G ) ` ( <" I "> ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( <" I "> ` k ) ) ) ) ) ) | 
						
							| 10 | 3 9 | mpbiri |  |-  ( I e. dom ( iEdg ` G ) -> A. k e. ( 1 ..^ ( # ` <" I "> ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( <" I "> ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( <" I "> ` k ) ) ) ) ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( G e. _V /\ S e. NN0* /\ I e. dom ( iEdg ` G ) ) -> A. k e. ( 1 ..^ ( # ` <" I "> ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( <" I "> ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( <" I "> ` k ) ) ) ) ) | 
						
							| 12 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 13 | 12 | isewlk |  |-  ( ( G e. _V /\ S e. NN0* /\ <" I "> e. Word dom ( iEdg ` G ) ) -> ( <" I "> e. ( G EdgWalks S ) <-> ( <" I "> e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` <" I "> ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( <" I "> ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( <" I "> ` k ) ) ) ) ) ) ) | 
						
							| 14 | 1 13 | syl3an3 |  |-  ( ( G e. _V /\ S e. NN0* /\ I e. dom ( iEdg ` G ) ) -> ( <" I "> e. ( G EdgWalks S ) <-> ( <" I "> e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` <" I "> ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( <" I "> ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( <" I "> ` k ) ) ) ) ) ) ) | 
						
							| 15 | 2 11 14 | mpbir2and |  |-  ( ( G e. _V /\ S e. NN0* /\ I e. dom ( iEdg ` G ) ) -> <" I "> e. ( G EdgWalks S ) ) |