Metamath Proof Explorer


Theorem 0funcg

Description: The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses 0funcg.c φ C V
0funcg.b φ = Base C
0funcg.d φ D Cat
Assertion 0funcg φ C Func D =

Proof

Step Hyp Ref Expression
1 0funcg.c φ C V
2 0funcg.b φ = Base C
3 0funcg.d φ D Cat
4 relfunc Rel C Func D
5 0ex V
6 5 5 relsnop Rel
7 1 2 3 0funcg2 φ f C Func D g f = g =
8 brsnop V V f g f = g =
9 5 5 8 mp2an f g f = g =
10 7 9 bitr4di φ f C Func D g f g
11 4 6 10 eqbrrdiv φ C Func D =