Metamath Proof Explorer


Theorem 0funclem

Description: Lemma for 0func . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses 0funclem.1 φ ψ χ θ τ
0funclem.2 χ η
0funclem.3 θ ζ
0funclem.4 τ
Assertion 0funclem φ ψ η ζ

Proof

Step Hyp Ref Expression
1 0funclem.1 φ ψ χ θ τ
2 0funclem.2 χ η
3 0funclem.3 θ ζ
4 0funclem.4 τ
5 df-3an χ θ τ χ θ τ
6 1 5 bitrdi φ ψ χ θ τ
7 6 rbaibd φ τ ψ χ θ
8 4 7 mpan2 φ ψ χ θ
9 2 3 anbi12i χ θ η ζ
10 8 9 bitrdi φ ψ η ζ