Metamath Proof Explorer


Theorem 0fv

Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014)

Ref Expression
Assertion 0fv A=

Proof

Step Hyp Ref Expression
1 noel ¬A
2 dm0 dom=
3 2 eleq2i AdomA
4 1 3 mtbir ¬Adom
5 ndmfv ¬AdomA=
6 4 5 ax-mp A=