Metamath Proof Explorer


Theorem 0idnsgd

Description: The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses 0idnsgd.1 B=BaseG
0idnsgd.2 0˙=0G
0idnsgd.3 φGGrp
Assertion 0idnsgd φ0˙BNrmSGrpG

Proof

Step Hyp Ref Expression
1 0idnsgd.1 B=BaseG
2 0idnsgd.2 0˙=0G
3 0idnsgd.3 φGGrp
4 2 0nsg GGrp0˙NrmSGrpG
5 3 4 syl φ0˙NrmSGrpG
6 1 nsgid GGrpBNrmSGrpG
7 3 6 syl φBNrmSGrpG
8 5 7 prssd φ0˙BNrmSGrpG