Metamath Proof Explorer


Theorem 0pss

Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996)

Ref Expression
Assertion 0pss AA

Proof

Step Hyp Ref Expression
1 0ss A
2 df-pss AAA
3 1 2 mpbiran AA
4 necom AA
5 3 4 bitri AA