Metamath Proof Explorer


Theorem 0pval

Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion 0pval A0𝑝A=0

Proof

Step Hyp Ref Expression
1 df-0p 0𝑝=×0
2 1 fveq1i 0𝑝A=×0A
3 c0ex 0V
4 3 fvconst2 A×0A=0
5 2 4 eqtrid A0𝑝A=0