Metamath Proof Explorer


Theorem 0thincg

Description: Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Assertion 0thincg Could not format assertion : No typesetting found for |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. ThinCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 0catg CV=BaseCCCat
2 ral0 xyBaseC*ffxHomCy
3 raleq =BaseCxyBaseC*ffxHomCyxBaseCyBaseC*ffxHomCy
4 2 3 mpbii =BaseCxBaseCyBaseC*ffxHomCy
5 4 adantl CV=BaseCxBaseCyBaseC*ffxHomCy
6 eqid BaseC=BaseC
7 eqid HomC=HomC
8 6 7 isthinc Could not format ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) : No typesetting found for |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) with typecode |-
9 1 5 8 sylanbrc Could not format ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. ThinCat ) with typecode |-