Metamath Proof Explorer


Theorem 0vtxrgr

Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion 0vtxrgr GWVtxG=k0*GRegGraphk

Proof

Step Hyp Ref Expression
1 simpr GWVtxG=k0*k0*
2 rzal VtxG=vVtxGVtxDegGv=k
3 2 ad2antlr GWVtxG=k0*vVtxGVtxDegGv=k
4 eqid VtxG=VtxG
5 eqid VtxDegG=VtxDegG
6 4 5 isrgr GWk0*GRegGraphkk0*vVtxGVtxDegGv=k
7 6 adantlr GWVtxG=k0*GRegGraphkk0*vVtxGVtxDegGv=k
8 1 3 7 mpbir2and GWVtxG=k0*GRegGraphk
9 8 ralrimiva GWVtxG=k0*GRegGraphk