Metamath Proof Explorer


Theorem 19.9d2r

Description: A deduction version of one direction of 19.9 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses 19.9d2r.1 φ x ψ
19.9d2r.2 φ y ψ
19.9d2r.3 φ x A y B ψ
Assertion 19.9d2r φ ψ

Proof

Step Hyp Ref Expression
1 19.9d2r.1 φ x ψ
2 19.9d2r.2 φ y ψ
3 19.9d2r.3 φ x A y B ψ
4 nfv y φ
5 4 1 2 3 19.9d2rf φ ψ