Metamath Proof Explorer


Theorem 19.9d2r

Description: A deduction version of one direction of 19.9 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses 19.9d2r.1
|- ( ph -> F/ x ps )
19.9d2r.2
|- ( ph -> F/ y ps )
19.9d2r.3
|- ( ph -> E. x e. A E. y e. B ps )
Assertion 19.9d2r
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 19.9d2r.1
 |-  ( ph -> F/ x ps )
2 19.9d2r.2
 |-  ( ph -> F/ y ps )
3 19.9d2r.3
 |-  ( ph -> E. x e. A E. y e. B ps )
4 nfv
 |-  F/ y ph
5 4 1 2 3 19.9d2rf
 |-  ( ph -> ps )